[image:]PREVIEW SDK

[image: memoQ 800x250]

[bookmark: _Toc506982969][bookmark: _Toc506983387][bookmark: _Toc506983441][bookmark: _Toc506983872][bookmark: _Toc507050828][bookmark: _Toc507053402][bookmark: _Toc507055079][bookmark: _Toc507059334][bookmark: _Toc507060728][bookmark: _Toc507061323][bookmark: _Toc507415792][bookmark: _Toc507417035][bookmark: _Toc507418224][bookmark: _Toc507419400][bookmark: _Toc508348243][bookmark: _Toc508348527][bookmark: _Toc508348600][bookmark: _Toc508348808][bookmark: _Toc508349048][bookmark: _Toc509313600][bookmark: _Toc509314663][bookmark: _Toc511200066][bookmark: _Toc511200448][bookmark: _Toc511201301][bookmark: _Toc511221144][bookmark: _Toc512001504][bookmark: _Toc512325880][bookmark: _Toc512326265][bookmark: _Toc512326597][bookmark: _Toc512326996][bookmark: _Toc512431561][bookmark: _Toc512431828][bookmark: _Toc512511584][bookmark: _Toc512511715][bookmark: _Toc512511971][bookmark: _Toc512589881][bookmark: _Toc512590249][bookmark: _Toc512590889][bookmark: _Toc512596608][bookmark: _Toc513031157][bookmark: _Toc513710075][bookmark: _Toc514157003][bookmark: _Toc514158609][bookmark: _Toc514231026][bookmark: _Toc514231350][bookmark: _Toc514232476][bookmark: _Toc514316721][bookmark: _Toc515968761]Preview SDK

	

[image:]© 2004-2018 Kilgray Translation Technologies.
All rights reserved.
www.memoQ.com

Contents
Versions	5
Overview	5
Use case 1	5
Use case 2	5
Use case 3	5
Overall concept	7
Source file format	8
XML filter	8
Preview identifier	9
Base URL	10
SRT filter	10
Multilingual delimited text filter	10
mqxliff roundtrip	11
Overall concept of communication between memoQ and preview tools	12
Communication endpoints	12
Connection handling	12
First connection	12
Later connections	13
Communication events	13
Register	13
Connect	13
Change runtime settings	13
Content update	13
Content request	13
Focus change in memoQ	14
Highlight change in preview	14
Preview part id update	14
Preview part id request	14
Automatic startup	15
Named pipe endpoint	16
Message structure	16
Message types	16
Negotiation request	16
Negotiation response	16
Registration request	17
Connection request	17
Change runtime settings request	17
Content update request from preview tool	18
Content update request from memoQ	18
Change highlight request from preview tool	18
Change highlight request from memoQ	18
Preview part id update request from preview tool	19
Preview part id update request from memoQ	19
Request accepted	19
Request refused	19
Invalid request	19
Entities	20
PreviewPart	20
PreviewPartWithFocusedRange	20
PreviewProperty	20
SourceDocument	20
PreviewContent	21
FocusedRange	21
REST endpoint	22
Protocol negotiation	22
Connection handling	23
Error handling	23
Invalid parameter	23
Negotiation failed	23
Missing or invalid connection key	24
Registration request refused	24
No enabled preview tool with this id	24
Preview tool already connected with this id	24
Internal server error	24
Requests from the preview tools	25
Negotiation request	25
Registration request	25
Connection request	26
Change runtime settings request	26
Content update request from preview tool	27
Change highlight request from preview tool	27
Preview part id update request from preview tool	28
Disconnect request	29
Requests from the memoQ client	29
Ping request	29
Content update request from memoQ	29
Change highlight request from memoQ	29
Preview part id update request from memoQ	30
Entities used in the request parameters	30
PreviewPart	30
PreviewPartWithFocusedRange	30
PreviewProperty	31
SourceDocument	31
PreviewContent	31
FocusedRange	31
.NET library	32
Preview service proxy	32
Constructors	32
ConnectedPreviewToolId property	32
Register method	32
Connect method	33
RequestRuntimeSettingsChange method	33
ConnectAndRequestRuntimeSettingsChange method	33
RequestContentUpdate method	33
ConnectAndRequestContentUpdate method	33
RequestHighlightChange method	33
ConnectAndRequestHighlightChange method	34
RequestPreviewPartIdUpdate method	34
ConnectAndRequestPreviewPartIdUpdate method	34
Disconnect method	34
Preview tool callback	34
HandleContentUpdateRequest method	34
HandleChangeHighlightRequest method	35
HandlePreviewPartIdUpdateRequest method	35
HandleDisconnect method	35
Method parameter entities	35
RegistrationRequest	35
ChangeRuntimeSettingsRequest	35
ContentUpdateRequestFromPreviewTool	36
ChangeHighlightRequestFromPreviewTool	36
ContentUpdateRequestFromMQ	36
ChangeHighlightRequestFromMQ	36
PreviewPartIdUpdateRequestFromMQ	36
Other entities	36
CommunicationProtocols	36
ErrorCodes	37
RequestStatus	37
PreviewPart	37
PreviewPartWithFocusedRange	37
PreviewProperty	37
SourceDocument	38
PreviewContent	38
FocusedRange	38
Exceptions	38
Demo preview tool	39
The main window	39
Register preview tool	39
Connect preview tool	40
Change runtime settings	40
Request content update	40
Request change highlight	41
Request preview part id update	41
Disconnect preview tool	42

[bookmark: _Toc250556317][bookmark: _Toc515968762]
Versions
	Date
	Version
	Who
	Change

	Feb 21, 2018
	1.0
	NG
	Initial version

[bookmark: _Toc250556318][bookmark: _Toc515968763]Overview
[bookmark: _Toc212805028][bookmark: _Toc212806973][bookmark: _Toc212903591][bookmark: _Toc224484473][bookmark: _Toc250556319]Before the memoQ version 8.5 there were two types of live preview for documents. The memoQ internal preview is created by the filters of memoQ during import. The EasyLing preview is created outside memoQ but it is available online. Both of these previews are visible on the memoQ preview pane.
This was a significant limitation when special file formats are translated whose meaningful preview cannot be generated by memoQ.
From version 8.5 memoQ offers an open interface to third party developers to connect to it. They get notification about events that are relevant in order to change the live preview of a document. This allows them to develop external preview tools for specific formats.
Let’s see some use cases to see how the new SDK helps the customers.
[bookmark: _Toc515968764]Use case 1
SoftCorp is a software developer company that wants to excel in development of localizable software. They try their best with pseudo translations and review processes but the localization process is very slow.
With the new preview SDK they are able to modify the localization engine of their software such that, when it is running along memoQ, it can get every translatable content directly from the translation grid of memoQ.
This allows the translators to immediately resolve localization problems during translation, or if it not possible, report them proactively already during translation. This speeds up localization of software products.
[bookmark: _Toc515968765]Use case 2
SpecFileCorp is a company that has translatable content and the visual output that they are localizing requires very complicated rendering (complicated magazines, 3D graphics). Their translation process was to create an xml file containing all translatable content, translate it without no visual feedback (as the built in xml preview is not relevant for their application and xslt based preview wasn’t powerful enough), then recreate their original formats from the xml files and visually inspect them. The possible additional translation rounds added delay to their translation process.
With the new SDK SpecFileCorp will develop a preview application that can show a complete and proper preview to the translator, right next to memoQ. They will ask their translators to install this application, and import their files with a customized configuration. Whenever they work on a file from SpecFileCorp, this preview application automatically starts up (after the first use) and allows the translators to do a better job.
[bookmark: _Toc515968766]Use case 3
memoQ offers quite good live preview to many file formats but there are formats that are not supported in terms of preview or the preview is not good. SubtitleEnthusiasts is an online community that translates subtitles, some of them uses memoQ, but they have no live feedback during translation.
With the new preview SDK the subtitle localization community can build a handy little open source preview tool that will make their life much easier. Whenever the translation is on a given line in the translation grid, the preview tool will play the corresponding part of the movie clip on repeat with the actual content from the memoQ translation grid. This makes subtitle translation a more efficient task allowing the community to translate more.

[bookmark: _Toc515968767]Overall concept
memoQ users have enjoyed real-time preview for many years: translators are able to see the context of each segment of text they translate, with a layout and formatting that is similar to the original (and final) document. The limitation is that this type of preview is only provided for some formats like Office formats, HTML and others, but for custom file formats like those often encountered in software localization, there is no preview (unless Kilgray decides to develop it).
The memoQ preview SDK makes it possible to extend memoQ with preview for additional file formats. The new concept is that memoQ doesn’t provide preview itself, but relies on the presence of a purpose-built custom application to do it. For example, if the developer of a smartwatch decides they need real time preview showing how translated strings appear on the actual device, then they can develop a custom preview application (either desktop or web), and a translator’s copy of memoQ (or its web translation tool) would connect to that application for preview.
memoQ and the custom preview application are connected by the preview “connector”. The connector is a simple concept: assuming that each piece of text has a unique identifier, memoQ will simply send the unique identifier of the currently active translation segment to the external preview app. The external preview app knows where that segment belongs, so it can show the right screen the right way. The assumption in this concept is that the developer of a smartwatch device has the means to build an application to emulate the device to the extent that it displays its screens the same way as the actual device, or at least close enough. As the translator translates a segment, memoQ will also send the translation of the active segment (along with the identifier), so the preview app can show the translation in context, and the correct appearance and length can be verified. A smart device is just one example, it could even be a video game, a mobile phone app running in an emulator, or just about anything else.
memoQ is a powerful tool for translation, but it cannot feasibly provide preview for the unlimited number of complex file formats and user interface frameworks in existence. But other developers can create custom tools to display those formats and interfaces, and the preview SDK provides a simple way to connect memoQ and those custom tools.
The concept can be applied to use cases beyond translation preview. For example, we have talked to a large video game developer that has an in-house system that contains all the millions of pieces of text that can appear in their line of massive video games, and an enormous amount of contextual information for them. Their custom system also contains extremely rich status information, for example testing status, which are relevant to the video game developer’s workflow, but are not covered by general purpose translation tools like memoQ. On the other hand, the game developer company has identified that memoQ would make their translators more efficient and productive in actual translation work: actually, memoQ got on their radar because their translators asked for it. So they have complex legacy systems that are very difficult to get rid of. Trying to map twenty workflow statuses to memoQ’s much more limited status system is impossible. Instead, the preview SDK can enable the two systems to run in parallel, connected by the preview SDK. While the translator works in memoQ, the legacy system could stay in complete sync with memoQ, showing all the additional information the translator may need. Translations added in memoQ could automatically go to the legacy system. Just like in the preview use case, technically the two tools exchange simple messages to make this happen. memoQ sends the unique ID of the current segment to the legacy tool, which then knows exactly what to open and show.

[bookmark: _Toc515968768]Source file format
From version 8.5 some memoQ filters will support importing external preview information. There are two main ways of getting external preview information into memoQ. One way is to use built in functionality of filters that support this (the XML filter, the SRT filter and the Multilingual delimited filter), this is described in the first part of this section. The other way is to use any filter for importing the file and to add external preview information manually using a roundtrip in the mqxliff format.
There are two types of information that make up the external preview information of a file. The most important is that for every piece of text there is a preview identifier. The other piece of information is a document level base url that identifies the location of the site that can produce a web based preview for a document, which is not mandatory to exist.
[bookmark: _Toc511311596][bookmark: _Toc515968769]XML filter
The preview identifiers can be represented as tags or attributes for every content just like how it works with contexts.
The representation of the URL of the web-based preview is the same, but it is a document level information, so only the first occurrence of it is imported for the entire document.
See following examples that demonstrate how to set external preview information for the memoQ Video Preview tool:
Example 1. Preview identifiers in tags
[image:]
Example 2. Preview identifiers in attributes
[image:]
In order to import external preview information, the filter configuration has to be changed. The configuration is pretty similar how it works for contexts. However these settings cannot be performed on the memoQ configuration UI, but the filter configuration resources have to be changed manually.
[bookmark: _Toc511311597][bookmark: _Toc515968770]Preview identifier
Tag
The ispreviewid attribute of the corresponding Tag in HandledTags has to be configured. Value yes means that this tag holds the preview identifier, but value no is the default.
The Tag can also have a previewidsiblingsas attribute that defines whether the preview identifier should apply to only the following content sibling (OnlyFollowing) or also to the preceding ones (PrecedingAndFollowing). The default value is OnlyFollowing. See example:
[image:]
Attribute
The previewid attribute of the corresponding Attribute inside Tag has to be configured. Value yes means that this attribute holds the preview identifier, but value no is the default.
The Attribute can also have a previewId attribute that defines how should the preview identifier be applied. (None: the attribute is not a preview identifier, Content: the preview identifier applies to the tag that has the attribute, ContentAndSibling: applies to the tag and following siblings, ContentAndPrecedingAndFollowingSiblings: applies to the tag, the following siblings and also the preceding ones). The default value is None. See example:
[image:]
[bookmark: _Toc511311598][bookmark: _Toc515968771]Base URL
Tag
The ispreviewurl attribute of the corresponding Tag in HandledTags has to be configured. Value yes means that this tag holds the URL of the web-based external preview, but value no is the default.
Attribute
The ispreviewurl attribute of the corresponding Attribute inside Tag has to be configured. Value yes means that this attribute holds the URL, but value no is the default.
[bookmark: _Toc515968772]SRT filter
In case of SRT files memoQ creates a predefined pattern for the preview identifiers for the text and no web-based preview url is imported.
The preview identifiers are create from every timeframe in the following format:
memoQSubtitlePlugin|{startTime}|{endTime}
where the SRT filter imports the timeframe start and end times as they appear in the source file.
[bookmark: _Toc511311599][bookmark: _Toc512001514][bookmark: _Toc515968773]Multilingual delimited text filter
This filter can be also used to set up external preview info, specifically for the memoQ Video Preview tool.
The preview identifiers are concatenated from separate columns for every row in the following format:
memoQSubtitlePlugin|{startTime}|{endTime}
See example:
[image:]
In the above example, the preview identifier for the first content row is:
memoQSubtitlePlugin|0:00:00|0:00:20
In order to import external preview information, the filter configuration has to be changed. The meanings have to be defined for every column.
[image:]

[bookmark: _Toc515968774]mqxliff roundtrip
The previously described ways of enabling external preview on a piece of content are comfortable but are limited to filters that are equipped with the functionality to import preview identifiers. This will not be done for every filter that memoQ has. Also that approach does not allow changing preview IDs of a document after import. In order to expose every document in memoQ to the possibility of external preview we offer another way to create/update the segment part – preview identifier mapping. This is done through the mqxliff export and update.
So basically this allows a workflow as follows:
· import document into memoQ,
· export mqxliff,
· modify the mqxliff outside memoQ to add or update the preview identifier markup of trans-units,
· update the document with the modified mqxliff.
See an example how external preview identifiers are stored in mqxliff. The external preview information is stored in two xml tags. The previewdocumentdata tag contains a list of previewdocumentdataitem tags that are practically key value pairs. This structure allows storing any document level preview related setting in a key-value format that the external preview might need. The WebPreviewBaseUrl key is reserved for memoQ, as the web-based preview url is stored under this key. In the example you can see the custom properties needed for subtitle translation (word per minute, characters per second and line length limits), these illustrate how format specific custom fields can be added.
The previewidsbylabels element contains a mapping from labels of pieces of text to their corresponding preview identifiers. The smallest unit that can be identified by a preview identifier uniquely is a segment part within memoQ (text that surrounded by {} tags if the the segments of the document is joined as much as possible). The previewidsbylabel elements contain a label and a previewed attribute. The preview id is the application dependent identifier of the text (the subtitle preview tool specific identifier is visible in the example), while the label attribute links to the internal labeling of text within memoQ. The internal labeling of a piece of text can be identified by the mq:firstlabel="<num>" and mq:lastlabel="<num>" attributes of the trans-unit tags in the mqxliff file.
[image:]
This workflow allows augmenting the document with a segment part – preview identifier mapping, or changing an existing mapping. Once this workflow is completed on a document, the decorated content will be enabled for external preview.

The above workflow can be used if the preview identifier that should be assigned to a piece of text can be determined by the text itself (and possibly its place in the document). However this might be complicated for certain file formats or workflows. One way of exactly knowing which piece of text is labeled by memoQ with a specific label is to import two files. One is a file with the actual translatable content the other is a file where the translatable content is replaced by unique identifiers. memoQ will assign the same label to the translatable text and its unique replacement in the two imports. This allows perfect matching of labels to preview identifiers. Once the preview identifiers are properly assigned, the dummy document with the replacements can be discarded.

[bookmark: _Toc515968775]Overall concept of communication between memoQ and preview tools
This section describes how a preview tool is attaching to memoQ desktop client and how the preview related data transfer is performed between the parties.
[bookmark: _Toc515968776]Communication endpoints
memoQ has two endpoints opened the preview tools can connect to. The endpoints are using different communication protocols. The first one can be connected via REST and the second one via Named pipes. The protocol specific parts of the communication will be described later more detailed (see Named pipe endpoint and REST endpoint sections). For .Net developers a library is readily available that wraps the named pipe communication for convenience.memoQ client
Preview tool “A”
Preview tool “B”
A

[bookmark: _Toc515968777]Connection handling
[bookmark: _Toc515968778]First connection
When a preview tool wants to get in touch with memoQ it is important to let memoQ know about all the relevant information needed to operate this connection. This registration can be done either manually (Options/External preview tools; see memoQ help for the details) or automatically over the API. Later on memoQ can automatically start a registered preview tool if needed.
Whenever a preview tool registers itself over the API, some important pieces of information are passed to memoQ. The transferred information consists of:
The preview tool identifier GUID that will be used to address the preview tool in all later communication.
The name of the preview tool.
The description of the preview tool (optional).
An automatic startup command line that can be used to start the preview tool automatically (optional).
A regular expression that is used to check if the stored preview identifier of the content belongs to the preview tool at hand or not.
A regular expression that is used to check if the stored base URL of the content belongs to the preview tool at hand or not.
Content complexity level description that shows how complex the representation of the offered text should be by default when sent to the tool.
When a preview tool connects to memoQ and that tool is not yet known to memoQ the user is asked for allowing the connection. If the user allows the connection, the tool gets registered and from then on the preview tool can send and will receive data as described in section Communication events. Otherwise the connection is ignored.
[bookmark: _Toc515968779]Later connections
It depends on the preview tool if it differentiates between first and later connections. If there is no differentiation then the data transfer, outlined above, will take place each time and memoQ will update the stored registration information. Otherwise the initial connection can restrict to transferring the preview tool identifier to let the memoQ know that the preview tool is ready to accept events.
This type of connection can be done explicitly (the tool announcing that it is listening) or implicitly (by the tool asking for update on a set of content ids or by asking memoQ to change the highlight).
[bookmark: _Toc515968780]Communication events
There is a set of events that can initiate communication between the memoQ client and the preview tool. These are listed in this section.
[bookmark: _Toc515968781]Register
If a preview tool is not yet registered, it sends a registration request to memoQ. If the preview tool sending registration request is already known, then memoQ will update its settings based on the request. The preview tool became connected in both cases and no more connection request required.
[bookmark: _Toc515968782]Connect
When a preview tool starts (independently of memoQ or started by the auto startup functionality), it registers itself so memoQ knows that the tool is running. In this case auto startup is not needed if matching content is found.
[bookmark: _Toc515968783]Change runtime settings
Preview tools are allowed to specify the complexity level of the offered text and the required additional properties (e.g. word counts, etc.) when memoQ sends it to the tool.
[bookmark: _Ref506981340][bookmark: _Toc515968784]Content update
When the preview needs to be notified about possible content change then an update operation is initiated from within memoQ. This happens when a document is opened; one or multiple rows are changed.
For every preview part that is involved in the update the following information is sent out by memoQ:
The identifier of the preview part.
The URL of the web-based preview the preview part appears on (only if the source file specified this URL).
The current language pair.
The source content.
The target content.
[bookmark: _Toc515968785]Content request
Preview tools are allowed to ask proactively for content. This is needed to ensure that when focus has to move to a different location, all surrounding content can be requested by the preview tool. The request contains the preview tool identifier, the list of preview part identifiers that cover the requested range and optionally the list of the target languages. As a result a Content update operation is going to be executed based on the given details.
memoQ responds to every content request, but the following content update operation contains only content that is available in opened documents and views and for which the preview identifier appears on the requested list.
[bookmark: _Toc515968786]Focus change in memoQ
When the cursor is moved from one segment to another then the preview highlight is changed. The preview tools are also notified about this change.
The notification contains the followings about the active preview parts:
The preview id of the focused content.
The URL of the web-based preview the preview part appears on (only if the source file specified this URL).
The current language pair.
The source content.
The target content.
The starting and ending positions marking the focused range for the source content.
The starting and ending positions marking the focused range for the target content.
This information makes it possible for the preview tool to highlight the exact segment that is in focus on the memoQ grid. If this is not possible in the tool, it can focus content based on the id only, disregarding the actual content and location information.
[bookmark: _Toc515968787]Highlight change in preview
As with the current memoQ built-in preview, if the user moves the highlight in the preview, the memoQ translation grid is also notified. This functionality is extended to preview tools as well. The added twist is that the built-in preview can only change the focus within the current document, while changing the focus in the preview tool might change the current document as well. But this is allowed only among opened documents.
When the highlight is changed in the preview tool, it notifies memoQ about this. If memoQ is configured to accept focus change from the given tool then memoQ will try to pinpoint the matching focus location in any of the open documents and if successful, it jumps there.
The message from the preview tool has the same format as in the other direction from memoQ to the tool. Identifying the location of the new focus is based on different details in the message.
If only the preview identifier is given, and that identifier is present only in a single language pair among the opened documents then the focus jumps to the first row containing parts of that preview id.
If preview id and language pair is given, then the focus selects the document in the appropriate language and the first segment covering the preview id.
If source or target text is provided along with start and end position on at least one side, then memoQ will try to match them with the actual content present in the document. It is reasonable to expect that simple highlight changes in the preview tool will not cause the content to deviate much, so in most cases the content in memoQ and in the preview tool is going to be the same. If not, then the change highlight request is ignored. If at least one of the sides is matching, then focus can be moved.
If target focus range is given, then focus jumps to the first row falling into the designated range. If source positions are given, they are used, but target has precedence.
[bookmark: _Ref511199606][bookmark: _Toc515968788]Preview part id update
When the preview asks for the preview part identifiers of the opened documents then an update operation is initiated from within memoQ. This happens only when the tool asks proactively for the preview part identifiers.
[bookmark: _Toc515968789]Preview part id request
Preview tools are allowed to ask proactively for the preview part identifiers of the opened documents. The request contains the preview tool identifier. As a result a Preview part id update operation is going to be executed.
[bookmark: _Toc515968790]Automatic startup
It can happen in many of the steps outlined above that memoQ recognizes that a registered preview tool should be involved and the preview tool is not yet connected and it is configured to be started automatically in such situations. In this case memoQ will run the auto startup command line configured for the preview tool and puts the action requests into a queue.
The normal operation is that shortly after the startup the tool connects itself, and then the queued actions can be sent to it.
[bookmark: _Ref506983719]

[bookmark: _Toc515968791]Named pipe endpoint
Named pipes provide interprocess communication between a pipe server (memoQ client) and pipe clients (preview tools). There is a dedicated communication channel between the memoQ client and a particular preview tool once a preview tool connects to the named pipe the memoQ client listening on. This communication channel has to be used by the preview tool to send/receive messages to/from the memoQ client. Please note that connecting to the preview pipe does not mean that the client is already connected as a preview tool. It means only that the communication channel has been established and the tool is able to send registration or connection requests.
If a preview tool wants to communicate with the API through Named pipes, then it has to connect to the pipe:
MQ_PREVIEW_PIPE_<TERMINAL_SERVER_SESSION_ID>
The placeholder <TERMINAL_SERVER_SESSION_ID> has to be replaced with the actual terminal server session identifier of the current windows user. It is necessary because multiple memoQ client instances can be run on the same computer parallel in terminal server mode (see memoQ help for the detailed description of this special execution mode) and this identifier selects the correct memoQ client instance.
The detailed description of the Named pipes can be found here. The pipe the memoQ client is listening on is a duplex pipe and the data in the pipe is transmitted and read as a stream of messages.
[bookmark: _Toc515968792]Message structure
Each message traveling on the pipe has the following members:
CommandType: the type of the current command as string.
CommandParameters: the details of the current command.
If the preview tool wants to send a message to the memoQ client, then it has to prepare a message in the format described above, JSON serialize it and write it into the pipe stream as an UTF8 encoded byte array.
If the preview tool receives a message, then it has to UTF8 decode the received byte array and JSON deserialize after that. Based on the CommandType it will be able to process the CommandParameters as well.
[bookmark: _Toc515968793]Message types
[bookmark: _Ref506992169]This section describes the possible message types of the communication protocol. The command parameter members with bold name are required members of the actual parameter type.
[bookmark: _Toc515968794][bookmark: _Ref507053021]Negotiation request
The preview tool has to send this message first in order to negotiate the communication protocol with memoQ.
Command type:
negotiation-request
Command parameters:
KnownProtocolVersions: The list of the protocol versions known by the preview tool as a string array. The supported versions are the following: V1.
[bookmark: _Toc515968795]Negotiation response
memoQ sends this message as response for a negotiation request received from the preview tool.
Command type:
negotiation-response
Command parameters:
ProtocolVersion: The protocol version to be used. It can be null if memoQ was unable to select any communication protocol from the list specified by the preview tool.
[bookmark: _Toc515968796]Registration request
The preview tool has to send this message if it wants to register itself or update its settings in memoQ. If the preview tool is already registered or it is not yet registered but the user allows the registration, then the preview tool become connected and no more connection request required from the tool.
Command type:
registration-request
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
PreviewToolName: The name of the preview tool.
PreviewToolDescription: The description of the preview tool.
AutoStartupCommand: The automatic startup command line that will be used to start the preview tool automatically. The tool will not be started automatically by memoQ if this field is not specified.
PreviewPartIdRegex: The regular expression is used to check if the stored preview identifier of the content belongs to the preview tool at hand or not.
RequiresWebPreviewBaseUrl: Indicates whether the preview tool requires the base URL of the web preview.
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required additional properties. The currently supported properties are the following: TODO.
[bookmark: _Ref506992217][bookmark: _Toc515968797]Connection request
The preview tool can send this message if it has already been registered in memoQ and want to connect it.
Command type:
connection-request
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
[bookmark: _Ref512326189][bookmark: _Toc515968798][bookmark: _Ref506993104]Change runtime settings request
The preview tool can send this message if it wants to change the complexity level of the offered text or the set of the required additional properties when memoQ sends it to the tool.
Command type:
change-runtime-settings-request
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required additional properties. The currently supported properties are the following: TODO.
[bookmark: _Toc515968799]Content update request from preview tool
The preview tool sends this message if it wants to ask proactively for content. As response memoQ will send a Content update request from memoQ message and this message will contain the content of the requested preview parts if they are present in the opened documents in memoQ.
Command type:
content-update-request-from-preview-tool
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
PreviewPartIds: The requested preview part ids. It has to be a string array.
TargetLangCodes: The target language codes of the requested preview parts. It has to be a string array. If it is not specified, then all target language variants will be sent by memoQ from the opened documents.
[bookmark: _Ref506993985][bookmark: _Toc515968800]Content update request from memoQ
memoQ sends this message if it wants to send content information for the preview tool.
Command type:
content-update-request-from-mq
Command parameters:
PreviewParts: The preview parts requested or affected by the content change. It is an array of PreviewPart entities.
[bookmark: _Ref506993158][bookmark: _Toc515968801]Change highlight request from preview tool
The preview tool sends this message if it wants to notify memoQ about a highlight change. memoQ will try to find the matching segment and bring it to the focus.
Command type:
change-highlight-request-from-preview-tool
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
[bookmark: _Ref507000668]PreviewPartId: The identifier of the preview part.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part.
TargetContent: The target content of the preview part.
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
[bookmark: _Toc515968802]Change highlight request from memoQ
memoQ sends this message if it wants to send information about the focused preview parts for the preview tool.
Command type:
change-highlight-request-from-mq
Command parameters:
ActivePreviewParts: The active preview parts. It is an array of PreviewPartWithFocusedRange entities.
[bookmark: _Ref511199965][bookmark: _Toc515968803]Preview part id update request from preview tool
The preview tool sends this message if it wants to ask proactively for preview part identifiers. As response memoQ will send a Preview part id update request from memoQ message and this message will contain the preview part identifiers of the opened documents in memoQ.
Command type:
preview-part-id-update-request-from-preview-tool
Command parameters:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
from the opened documents.
[bookmark: _Ref511199894][bookmark: _Toc515968804]Preview part id update request from memoQ
memoQ sends this message as the response for the Preview part id update request from preview tool message.
Command type:
preview-part-id-update-request-from-mq
Command parameters:
PreviewPartIds: The preview part identifiers. It is a string array.
[bookmark: _Toc515968805]Request accepted
memoQ sends this message if a request received from the preview tool has been accepted by the memoQ client.
[bookmark: _GoBack]Command type:
request-accepted
Command parameters:
CommandType: The type of the accepted command.
[bookmark: _Toc515968806]Request refused
memoQ sends this message if a request received from the preview tool has been refused by the memoQ client.
Command type:
request-refused
Command parameters:
CommandType: The type of the refused command.
ErrorCode: The cause if the request has been refused. The possible values: registration-request-refused, no-enabled-preview-tool-with-this-id, preview-tool-already-connected-with-this-id
ErrorMessage: The error message describing of the problem.
[bookmark: _Toc515968807]Invalid request
memoQ sends this message if an incoming request is invalid. A request can be invalid if:
The message could not be deserialized.
The CommandType is invalid.
The CommandParameters are not correct (e.g. required fields are missing).
The preview tool id in Content update request from preview tool or in Change highlight request from preview tool message is different from the id sent in the Registration request or Connection request.
Command type:
request-refused
Command parameters:
OriginalRequest: The original request. It is null if the original message could not be deserialized.
ErrorMessage: The description of the problem.
[bookmark: _Toc515968808]Entities
This section describes the entities used by the messages.
[bookmark: _Ref507000044][bookmark: _Toc515968809]PreviewPart
This entity is used in the Content update request from memoQ message and represents a preview part for a particular language pair.
Entity members:
PreviewPartId: The identifier of the preview part.
PreviewProperties: The additional preview properties. It is an array of PreviewProperty entities.
SourceDocument: The source document containing the preview part. It is a SourceDocument entity.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part. It is a PreviewContent entity.
TargetContent: The target content of the preview part. It is a PreviewContent entity.
[bookmark: _Ref507000511][bookmark: _Toc515968810]PreviewPartWithFocusedRange
This entity is used in the Change highlight request from preview tool and represents a preview part for a particular language pair and also contains information about the focused ranges.
Entity members:
PreviewPartId: The identifier of the preview part.
PreviewProperties: The additional preview properties. It is an array of PreviewProperty entities.
SourceDocument: The source document containing the preview part. It is a SourceDocument entity.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part. It is a PreviewContent entity.
TargetContent: The target content of the preview part. It is a PreviewContent entity.
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
[bookmark: _Ref514231923][bookmark: _Toc515968811][bookmark: _Ref509313564][bookmark: _Ref508348323]PreviewProperty
This entity represents an additional preview property.
Entity members:
Name: The name of the property.
Value: The value of the property.
[bookmark: _Toc515968812]SourceDocument
This entity is used in the entities PreviewPart and PreviewPartWithFocusedRange. It describes a source document containing a preview part.
Entity members:
DocumentGuid: The guid of the document.
DocumentName: The name of the document.
ImportPath: The import path of the document.
[bookmark: _Ref512325745][bookmark: _Toc515968813]PreviewContent
This entity is used in the entities PreviewPart and PreviewPartWithFocusedRange. It describes the content of a preview part.
Entity members:
Complexity: The complexity of the content. It can be Minimal or PlainWithInterpretedFormatting.
Content: The preview content.
[bookmark: _Toc515968814]FocusedRange
This entity is used in the entity PreviewPartWithFocusedRange and in Change highlight request from preview tool. It describes the focused range of a preview part.
Entity members:
StartIndex: The start index of the focused range.
Length: The length of the focused range.
[bookmark: _Ref506983834]

[bookmark: _Toc515968815]REST endpoint
When discussing REST, it is common to use the terms "client" and "server" to refer to the initiator and recipient of a request message, respectively. In our case, the client is the preview tool and the server is the memoQ client. However, memoQ client also wants to send messages to the preview tool. Because of this the preview tool has to act as REST server as well. The memoQ client’s REST endpoint provides the address for the preview tool where it has to publish its callback interface.
The default base address of the memoQ client’s REST endpoint:
http://localhost:8088/MQPreviewService
This endpoint can be configured from the installer and from the memoQ client (it requires administrator rigths) as well. If the preview tool wants to send requests to the memoQ client, then it has to append the current windows user’s terminal server session id to the base address. It is necessary because multiple memoQ client instances can be run on the same computer parallel in terminal server mode (see memoQ help for the detailed description of this special execution mode) and this identifier selects the correct memoQ client instance. So the complete base address of the service looks like this:
http://localhost:8088/MQPreviewService/<TERMINAL_SERVER_SESSION_ID>
The request and response bodies have to contain the parameters in JSON serialized format (the later sections contain the exact descriptions of the request parameters). The maximum request size accepted by memoQ and the maximum size of the requests sent by memoQ is 8 MB.
If memoQ wants to send a request bigger than 8 MB, then it chops the original request and sends the request parts after each other synchronously. The http header of the requests contain the following information about the chopping:
· MESSAGE-CORRELATION-ID: It is a guid and identifies the original (not chopped) request. Each part of the original request has the same correlation id.
· NUMBER-OF-MESSAGE-PARTS: The number of the chopped parts of the original request.
· LAST-MESSAGE: Indicates whether the current request is the last part of the original request.
The following messages can be chopped by memoQ:
· Content update request from memoQ
· Change highlight request from memoQ
· Preview part id update request from memoQ
[bookmark: _Toc515968816]Protocol negotiation
As the first step the preview tool has to negotiate the communication protocol with memoQ. Currently there is only one supported protocol, but in the future might be more. If the negotiation was successful, then memoQ client returns the following response for the preview tool:
HTTP status code:
OK (200)
Response parameter type:
NegotiationResponse
Response parameter members:
ConnectionKey: REST is a stateless protocol, but memoQ client has to identify the connected preview tools. This key identifies the current connection and the preview tool has to send this key in the requests’ authorization header in this form:
PREVIEW-TOOL-CONNECTION-KEY <CONNECTION_KEY>
ProtocolVersion: The protocol version to be used.
[bookmark: _Toc515968817]Connection handling
If the preview tool wants to communicate with the memoQ client, first it has to connect itself. It can be an explicit registration/connection request or it also can be an implicit connection request. If the connection is allowed, then memoQ client returns the following response for the preview tool:
HTTP status code:
OK (200)
Response parameter type:
ConnectionResponse
Response parameter members:
CallbackAddress: The preview tool has to publish its REST services at this URL. The section Requests from the memoQ client contains the details of the services the preview tool has to provide for the memoQ client.
PingIntervalInSecs: memoQ client periodically sends ping requests in order to be able to detect whether the client is still alive. This member contains the ping interval of the memoQ client. It can be used by the preview tool as well to detect whether the memoQ is still alive.
[bookmark: _Toc515968818]Error handling
If the processing of a request sent by the preview tool results in an error, then memoQ client returns information about the error:
Response parameter type:
ErrorDetails
Response parameter members:
ErrorCode: This string uniquely identifies the problem. See the possible error codes below.
ErrorMessage: The detailed description of the problem.
The following sections describe the possible errors.
[bookmark: _Ref507406609][bookmark: _Toc515968819][bookmark: _Ref507410385]Invalid parameter
memoQ sends this error response if the input parameter is invalid.
HTTP status code:
BadRequest (400)
Error code:
InvalidRequestParameters
Error message:
It contains the description of the problem.
[bookmark: _Ref514156852][bookmark: _Toc515968820][bookmark: _Ref507418688]Negotiation failed
memoQ sends this error response for a negotiation request if was unable to select any communication protocol from the list specified by the preview tool.
HTTP status code:
SwitchingProtocols (101)
Error code:
ProtocolNegotiationFailed
Error message:
memoQ was unable to select any communication protocol from the specified list.
[bookmark: _Toc515968821]Missing or invalid connection key
Once the negotiation is done, the connection key has to be inserted into the authorization header field of the requests. The missing or invalid connection key error response will be sent if the connection key is missing or the connection key is an invalid connection key or there is no connection with the provided connection key.
HTTP status code:
Forbidden (403)
Error code:
MissingOrInvalidConnectionKey
Error message:
The connection key is missing or invalid or does not match the current connection key of the preview tool.
[bookmark: _Ref507406282][bookmark: _Toc515968822]Registration request refused
memoQ sends this error response for a registration request if it has been refused from the memoQ client or the preview tool has been disabled.
HTTP status code:
Forbidden (403)
Error code:
RegistrationRequestRefused
Error message:
Registration request has been refused from the memoQ client or the preview tool has been disabled.
[bookmark: _Ref512431774][bookmark: _Toc515968823]No enabled preview tool with this id
memoQ sends this error response if a request received from the preview tool has been refused by the memoQ client because there is no enabled preview tool with the specified id.
HTTP status code:
Forbidden (403)
Error code:
NoEnabledPreviewToolWithThisId
Error message:
There is no enabled preview tool with this id in memoQ.
[bookmark: _Ref507406391][bookmark: _Ref512431654][bookmark: _Toc515968824][bookmark: _Ref507406400][bookmark: _Ref507416688]Preview tool already connected with this id
memoQ sends this error response for an explicit or implicit connection request if an another preview tool has already been connected with the same preview tool identifier.
HTTP status code:
Forbidden (403)
Error code:
PreviewToolAlreadyConnectedWithThisId
Error message:
Preview tool with the same id has already been connected.
[bookmark: _Ref507418442][bookmark: _Toc515968825]Internal server error
memoQ sends this error response if an internal error occurred during the processing of the request.
HTTP status code:
InternalServerError (500)
Error code:
InternalServerError
Error message:
An internal error occurred. Check the log for details.
[bookmark: _Toc515968826]Requests from the preview tools
This section describes the requests can be sent by the preview tools. The request parameter members with bold name are required members of the actual parameter type.
[bookmark: _Toc515968827][bookmark: _Ref507415287]Negotiation request
The preview tool at first has to send a negotiation request if it wants to communicate with memoQ.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>
HTTP method:
POST
Request parameter type:
NegotiationRequest
Request parameter members:
KnownProtocolVersions: The list of the protocol versions known by the preview tool as a string array. The currently supported versions are the following: V1.
Response code:
OK (200)
Response content:
NegotiationResponse
Possible error responses:
Invalid parameter
Negotiation failed
Internal server error
[bookmark: _Toc515968828]Registration request
The preview tool has to send registration request if it wants to register itself or update its settings in memoQ. If the preview tool is already registered or it is not yet registered but the user allows the registration, then the preview tool become connected and no more connection request required from the tool.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools
HTTP method:
POST
Request parameter type:
RegistrationRequest
Request parameter members:
PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
PreviewToolName: The name of the preview tool.
PreviewToolDescription: The description of the preview tool.
AutoStartupCommand: The automatic startup command line that will be used to start the preview tool automatically. The tool will not be started automatically by memoQ if this field is not specified.
PreviewPartIdRegex: The regular expression is used to check if the stored preview identifier of the content belongs to the preview tool at hand or not.
RequiresWebPreviewBaseUrl: Indicates whether the preview tool requires the base URL of the web preview.
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required additional properties. The currently supported properties are the following: TODO.
Response code:
OK (200)
Response content:
ConnectionResponse
Possible error responses:
Invalid parameter
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Ref507415351][bookmark: _Toc515968829]Connection request
The preview tool sends this request if it has already been registered in memoQ and want to connect it.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>
HTTP method:
GET
Response code:
OK (200)
Response content:
ConnectionResponse
Possible error responses:
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Ref512326799][bookmark: _Toc515968830][bookmark: _Ref507412270]Change runtime settings request
The preview tool sends this request if it wants to change the complexity level of the offered text or the set of the required additional properties when memoQ sends it to the tool. If the request does not contain the connection key in the authorization header, then memoQ tries to connect the preview tool based on the provided preview tool id.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>
HTTP method:
PATCH
Request parameter type:
ChangeRuntimeSettingsRequest
Request parameter members:
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required additional properties. The currently supported properties are the following: TODO.
 Response code:
OK (200)
Response content:
ConnectionResponse (if the request was an implicit connection request)
Possible error responses:
Invalid parameter
Missing or invalid connection key
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Toc515968831]Content update request from preview tool
The preview tool sends this request if it wants to ask proactively for content. As response memoQ will send a content update request to the callback service published by the preview tool and this message will contain the content of the requested preview parts if they are present in the opened documents in memoQ. If the request does not contain the connection key in the authorization header, then memoQ tries to connect the preview tool based on the provided preview tool id.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>/content
HTTP method:
POST
Request parameter type:
ContentUpdateRequestFromPreviewTool
Request parameter members:
PreviewPartIds: The requested preview part ids. It has to be a string array.
TargetLangCodes: The target language codes of the requested preview parts. It has to be a string array. If it is not specified, then all target language variants will be sent by memoQ from the opened documents.
Response code:
OK (200)
Response content:
ConnectionResponse (if the request was an implicit connection request)
Possible error responses:
Invalid parameter
Missing or invalid connection key
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Ref507412323][bookmark: _Toc515968832]Change highlight request from preview tool
The preview sends this request if it wants to notify memoQ about a highlight change. memoQ will try to find the matching segment and bring it to the focus. If the request does not contain the connection key in the authorization header, then memoQ tries to connect the preview tool based on the provided preview tool id.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>/highlight
HTTP method:
POST
Request parameter type:
ChangeHighlightRequestFromPreviewTool
Request parameter members:
PreviewPartId: The identifier of the preview part.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part.
TargetContent: The target content of the preview part.
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
Response code:
OK (200)
Response content:
ConnectionResponse (if the request was an implicit connection request)
Possible error responses:
Invalid parameter
Missing or invalid connection key
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Ref511201230][bookmark: _Toc515968833][bookmark: _Ref507415579]Preview part id update request from preview tool
The preview tool sends this request if it wants to ask proactively for preview part identifiers. As response memoQ will send a preview part id update request to the callback service published by the preview tool and this message will contain the preview part identifiers of the opened documents in memoQ. If the request does not contain the connection key in the authorization header, then memoQ tries to connect the preview tool based on the provided preview tool id.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>/previewpartids
HTTP method:
POST
Request parameter type:
Has no parameters.
Request parameter members:
Has no parameters.
Response code:
OK (200)
Response content:
ConnectionResponse (if the request was an implicit connection request)
Possible error responses:
Invalid parameter
Missing or invalid connection key
No enabled preview tool with this id
Preview tool already connected with this id
Internal server error
[bookmark: _Ref511202374][bookmark: _Toc515968834]Disconnect request
The preview sends this request if it wants to disconnect itself.
Relative URL:
<BASE_ADDRESS>/<TERMINAL_SERVER_SESSION_ID>/previewtools/<previewToolId>
HTTP method:
DELETE
Response code:
OK (200)
Possible error responses:
Missing or invalid connection key
Internal server error
[bookmark: _Ref511220756][bookmark: _Toc515968835]Requests from the memoQ client
This section describes the requests can be sent by the memoQ client. The preview tool has to handle these request at the address returned by memoQ client in ConnectionResponse.
[bookmark: _Toc515968836]Ping request
memoQ client sends this request right after the connection request has been accepted to check whether the callback service is up and running. If the first call is not successful, then the memQ client waits five seconds and tries again two times. The preview tool has to respond with HTTP status code OK. Once the callback service is up and running, the memoQ client periodically sends this request in order to be able to detect whether the preview tool is still alive. If the preview tool does not respond the request, then the tool will be disconnected by the memoQ client.
Relative URL:
<CALLBACK_ADDRESS_RETURNED_IN_CONNECTION_RESPONSE>
HTTP method:
GET
Response code:
OK (200)
[bookmark: _Ref507412373][bookmark: _Toc515968837]Content update request from memoQ
memoQ sends this request if it wants to send content information for the preview tool.
Relative URL:
<CALLBACK_ADDRESS_RETURNED_IN_CONNECTION_RESPONSE>/content
HTTP method:
POST
Request parameter type:
ContentUpdateRequestFromMQ
Request parameter members:
PreviewParts: The preview parts requested or affected by the content change. It is an array of PreviewPart entities.
Response code:
OK (200)
[bookmark: _Ref507412450][bookmark: _Toc515968838]Change highlight request from memoQ
memoQ sends this request if it wants to send information about the focused preview parts for the preview tool.
Relative URL:
<CALLBACK_ADDRESS_RETURNED_IN_CONNECTION_RESPONSE>/highlight
HTTP method:
POST
Request parameter type:
ChangeHighlightRequestFromMQ
Request parameter members:
ActivePreviewParts: The active preview parts. It is an array of PreviewPartWithFocusedRange entities.
Response code:
OK (200)
[bookmark: _Ref515968289][bookmark: _Toc515968839]Preview part id update request from memoQ
memoQ sends this request as the response for the Preview part id update request from preview tool request.
Relative URL:
<CALLBACK_ADDRESS_RETURNED_IN_CONNECTION_RESPONSE>/previewpartids
HTTP method:
POST
Request parameter type:
ContentUpdateRequestFromMQ
Request parameter members:
PreviewPartIds: The preview part identifiers. It is a string array.
Response code:
OK (200)
[bookmark: _Toc515968840]Entities used in the request parameters
This section describes the entities used by the parameter of the requests.
[bookmark: _Ref507412568][bookmark: _Toc515968841]PreviewPart
This entity is used in the Content update request from memoQ and represents a preview part for a particular language pair.
Entity members:
PreviewPartId: The identifier of the preview part.
PreviewProperties: The additional preview properties. It is an array of PreviewProperty entities.
SourceDocument: The source document containing the preview part. It is a SourceDocument entity.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part. It is a PreviewContent entity.
TargetContent: The target content of the preview part. It is a PreviewContent entity.
[bookmark: _Ref507412407][bookmark: _Toc515968842]PreviewPartWithFocusedRange
This entity is used in Change highlight request from memoQ and represents a preview part for a particular language pair and also contains information about the focused ranges.
Entity members:
PreviewPartId: The identifier of the preview part.
PreviewProperties: The additional preview properties. It is an array of PreviewProperty entities.
SourceDocument: The source document containing the preview part. It is a SourceDocument entity.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part. It is a PreviewContent entity.
TargetContent: The target content of the preview part. It is a PreviewContent entity.
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
[bookmark: _Ref514232118][bookmark: _Toc515968843][bookmark: _Ref509313846][bookmark: _Ref508347741]PreviewProperty
This entity represents an additional preview property.
Entity members:
Name: The name of the property.
Value: The value of the property.
[bookmark: _Toc515968844]SourceDocument
This entity is used in the entities PreviewPart and PreviewPartWithFocusedRange. It describes a source document containing a preview part.
Entity members:
DocumentGuid: The guid of the document.
DocumentName: The name of the document.
ImportPath: The import path of the document.
[bookmark: _Ref512326562][bookmark: _Toc515968845]PreviewContent
This entity is used in the entities PreviewPart and PreviewPartWithFocusedRange. It describes the content of a preview part.
Entity members:
Complexity: The complexity of the content. It can be Minimal or PlainWithInterpretedFormatting.
Content: The preview content.
[bookmark: _Toc515968846]FocusedRange
This entity is used in the entity PreviewPartWithFocusedRange and in Change highlight request from preview tool. It describes the focused range of a preview part.
Entity members:
StartIndex: The start index of the focused range.
Length: The length of the focused range.

[bookmark: _Toc515968847].NET library
The SDK contains a .NET library for the .NET developers in order to help them to create preview tools easier. This library hides the communication related complexity and provides a clean interface for the preview tool developers. This chapter contains the description of this library.
[bookmark: _Toc515968848]Preview service proxy
The entry point of the library is the class PreviewServiceProxy. This class is thread safe, parallel invocations of the members will be executed after each other. The following sections describe the members of this class.
[bookmark: _Toc515968849]Constructors
The first constructor allows to specify the base address and the communication protocol to be used as well.
Input parameters:
previewToolCallback: An object implementing the interface IPreviewToolCallback.
baseAddress: The base address of the communication endpoint.
communicationProtocol: The communication protocol the preview tool wants to use. It is a CommunicationProtocols enum.
The second constructor allows to specify the base address only and tries to find out the protocol based on the specified address. If it is a valid URI, then the REST protocol, otherwise the Named pipe protocol will be used.
Input parameters:
previewToolCallback: An object implementing the interface IPreviewToolCallback.
baseAddress: The base address of the communication endpoint.
The third constructor does not allow to specify the base address nor the communications protocol. It tries to connect to the Name pipe endpoint on the default base address (MQ_PREVIEW_SERVICE). If it fails, then it tries to connect to the default base address of the REST endpoint (http://localhost:8088/MQPreviewService).
Input parameters:
previewToolCallback: An object implementing the interface IPreviewToolCallback.
[bookmark: _Toc515968850]ConnectedPreviewToolId property
This property gets the id of the connected preview tool. The return value is an empty guid if the preview tool has not been connected yet.
[bookmark: _Toc515968851]Register method
This method can be used if a preview tool is not yet registered, it wants to send a registration request to memoQ. If the preview tool sending registration request is already known, then memoQ will update its settings based on the request. The preview tool became connected in both cases and no more connection request required.
Input parameters:
registrationRequest: It is a RegistrationRequest object.
Return value:
A RequestStatus object describing whether the registration request was accepted.
[bookmark: _Toc515968852]Connect method
This method can be used if an already registered preview tool wants to connect to memoQ.
Input parameters:
previewToolId: The identifier of the preview tool. It is a guid.
Return value:
A RequestStatus object describing whether the connection request was accepted.
[bookmark: _Toc515968853]RequestRuntimeSettingsChange method
This method can be used if an already connected preview tool wants to change its content complexity settings or the required additional properties in memoQ.
Input parameters:
changeRuntimeSettingsRequest: It is a ChangeRuntimeSettingsRequest object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968854]ConnectAndRequestRuntimeSettingsChange method
This method can be used if a not yet connected but registered preview tool wants to change its content complexity settings or the required additional properties in memoQ.
Input parameters:
previewToolId: It is the id of the preview tool wants to connect.
changeRuntimeSettingsRequest: It is a ChangeRuntimeSettingsRequest object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968855]RequestContentUpdate method
This method can be used if an already connected preview tool wants to request a content update from memoQ.
Input parameters:
contentUpdateRequest: It is a ContentUpdateRequestFromPreviewTool object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968856]ConnectAndRequestContentUpdate method
This method can be used if a not yet connected but registered preview tool wants to request a content update from memoQ.
Input parameters:
previewToolId: It is the id of the preview tool wants to connect.
contentUpdateRequest: It is a ContentUpdateRequestFromPreviewTool object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968857]RequestHighlightChange method
This method can be used if an already connected preview tool wants to request a highlight change in memoQ.
Input parameters:
highlightChangeRequest: It is a ChangeHighlightRequestFromPreviewTool object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968858]ConnectAndRequestHighlightChange method
This method can be used if a not yet connected but registered preview tool wants to request a highlight change in memoQ.
Input parameters:
previewToolId: It is the id of the preview tool wants to connect.
highlightChangeRequest: It is a ChangeHighlightRequestFromPreviewTool object.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968859]RequestPreviewPartIdUpdate method
This method can be used if an already connected preview tool wants to request a preview part id update from memoQ.
Input parameters:
There are no input parameters.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968860]ConnectAndRequestPreviewPartIdUpdate method
This method can be used if a not yet connected but registered preview tool wants to request a preview part id update from memoQ.
Input parameters:
previewToolId: It is the id of the preview tool wants to connect.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968861]Disconnect method
This method can be used if an already connected preview tool wants to disconnect.
Input parameters:
There are no input parameters.
Return value:
A RequestStatus object describing whether request was accepted.
[bookmark: _Toc515968862]Preview tool callback
The interface IPreviewToolCallback contains the methods the preview tool has to implement in order to be able to process the requests sent by memoQ. The methods of this interface will not be called concurrently. The following subsections describe the members of this interface.
[bookmark: _Toc515968863]HandleContentUpdateRequest method
This method is called when memoQ wants to send content update requests for the preview tool.
Input parameters:
contentUpdateRequest: It is a ContentUpdateRequestFromMQ object.
[bookmark: _Toc515968864]HandleChangeHighlightRequest method
This method is called when memoQ wants to send change highlight requests for the preview tool.
Input parameters:
changeHighlightRequest: It is a ChangeHighlightRequestFromMQ object.
[bookmark: _Toc515968865]HandlePreviewPartIdUpdateRequest method
This method is called when memoQ wants to send preview part id update requests for the preview tool.
Input parameters:
previewPartIdUpdate: It is a PreviewPartIdUpdateRequestFromMQ object.
[bookmark: _Toc515968866]HandleDisconnect method
This method is called when the tool become disconnected.
Input parameters:
There are no input parameters.
[bookmark: _Toc512511509][bookmark: _Toc515968867]Method parameter entities
This section describes the entities used by the methods of the proxy and the methods of the callback interface.
[bookmark: _Ref512502745][bookmark: _Toc512511510][bookmark: _Toc515968868]RegistrationRequest
This class represents the registration request message.
Members:
[bookmark: _Ref512503377]PreviewToolId: The unique identifier of the preview tool. It has to be a valid GUID.
PreviewToolName: The name of the preview tool.
PreviewToolDescription: The description of the preview tool.
AutoStartupCommand: The automatic startup command line that will be used to start the preview tool automatically. The tool will not be started automatically by memoQ if this field is not specified.
PreviewPartIdRegex: The regular expression is used to check if the stored preview identifier of the content belongs to the preview tool at hand or not.
RequiresWebPreviewBaseUrl: Indicates whether the preview tool requires the base url of the web preview.
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required additional properties. The currently supported properties are the following: TODO.
[bookmark: _Toc512511511][bookmark: _Ref514231481][bookmark: _Toc515968869]ChangeRuntimeSettingsRequest
This class represents the change runtime settings request message.
Members:
ContentComplexity: The complexity level of the offered text when memoQ sends it to the tool. It can be Minimal (the final plain text of the segment part without any inline tags or formatting) or PlainWithInterpretedFormatting (The final plain text of the segment part with interpreted formatting (b/i/u/sup/sub in html format)).
RequiredProperties: The names of the required properties. The currently supported properties are the following: TODO.
[bookmark: _Ref512503858][bookmark: _Toc512511512][bookmark: _Toc515968870]ContentUpdateRequestFromPreviewTool
[bookmark: _Ref512504066]This class represents the content update request message sent by the preview tool.
Members:
PreviewPartIds: The requested preview part ids. It has to be a string array.
TargetLangCodes: The target language codes of the requested preview parts. It has to be a string array. If it is not specified, then all target language variants will be sent by memoQ from the opened documents.
[bookmark: _Toc512511513][bookmark: _Toc515968871]ChangeHighlightRequestFromPreviewTool
[bookmark: _Ref512507960]This class represents the change highlight request message sent by the preview tool.
Members:
PreviewPartId: The identifier of the preview part.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part.
TargetContent: The target content of the preview part.
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
[bookmark: _Toc512511514][bookmark: _Toc515968872]ContentUpdateRequestFromMQ
[bookmark: _Ref512508051]This class represents the content update request message sent by memoQ.
Members:
PreviewParts: The preview parts requested or affected by the content change. It is an array of PreviewPart entities.
[bookmark: _Toc512511515][bookmark: _Toc515968873]ChangeHighlightRequestFromMQ
[bookmark: _Ref512508065]This class represents the change highlight request message sent by memoQ.
Members:
ActivePreviewParts: The active preview parts. It is an array of PreviewPartWithFocusedRange entities.
[bookmark: _Toc512511516][bookmark: _Toc515968874]PreviewPartIdUpdateRequestFromMQ
This class represents the preview part id update request message sent by memoQ.
Members:
PreviewPartIds: The preview part identifiers. It is a string array.
[bookmark: _Toc512511517][bookmark: _Toc515968875]Other entities
[bookmark: _Ref512502370][bookmark: _Toc512511518][bookmark: _Toc515968876]CommunicationProtocols
This enum describes the possible communication protocols.
Members:
NamePipe: Represents the named pipe communication protocol.
REST: Represents the REST communication protocol.
[bookmark: _Ref512508684][bookmark: _Toc512511519][bookmark: _Toc515968877]ErrorCodes
This enum describes the possible error codes the request can return with.
Members:
InvalidRequestParameters: Sent if the request parameters are invalid.
RegistrationRequestRefused: Sent if the registration request was refused.
NoEnabledPreviewToolWithThisId: Sent if there is no enabled preview tool with the specified id.
PreviewToolAlreadyConnectedWithThisId: Sent if a preview tool with the specified id has already been connected.
UnexpectedError: Sent if an unexpected error occurred.
[bookmark: _Ref512503103][bookmark: _Toc512511520][bookmark: _Toc515968878]RequestStatus
This class represents the status of a request sent by the preview tool.
Members:
RequestAccepted: Gets whether the request was accepted.
ErrorCode: The cause if the request has been refused. It is a nullable ErrorCodes enum.
ErrorMessage: The error message describing the problem.
[bookmark: _Ref512509448][bookmark: _Toc512511521][bookmark: _Toc515968879]PreviewPart
This class represents a preview part.
Entity members:
PreviewPartId: The identifier of the preview part.
PreviewProperties: The additional preview properties. It is an array of PreviewProperty entities.
SourceDocument: The source document containing the preview part. It is a SourceDocument entity.
SourceLangCode: The source language code of the preview part.
TargetLangCode: The target language code of the preview part.
SourceContent: The source content of the preview part. It is a PreviewContent entity.
TargetContent: The target content of the preview part. It is a PreviewContent entity.
[bookmark: _Ref512511343][bookmark: _Toc512511522][bookmark: _Toc515968880]PreviewPartWithFocusedRange
This class represents a preview part with a focused range. It inherits from the PreviewPart class and has two additional members.
Additional entity members:
SourceFocusedRange: The focused range on the source side. It is a FocusedRange entity.
TargetFocusedRange: The focused range on the target side. It is a FocusedRange entity.
[bookmark: _Ref514232227][bookmark: _Toc515968881][bookmark: _Ref512509495][bookmark: _Toc512511523]PreviewProperty
This entity represents an additional preview property.
Entity members:
Name: The name of the property.
Value: The value of the property.
[bookmark: _Toc515968882]SourceDocument
This class represents the source document in memoQ.
Entity members:
DocumentGuid: The guid of the document.
DocumentName: The name of the document.
ImportPath: The import path of the document.
[bookmark: _Ref512509521][bookmark: _Toc512511524][bookmark: _Toc515968883]PreviewContent
This class represents a preview content.
Entity members:
Complexity: The complexity of the content. It can be Minimal or PlainWithInterpretedFormatting.
Content: The preview content.
[bookmark: _Ref512509588][bookmark: _Toc512511525][bookmark: _Toc515968884]FocusedRange
This class represents a focused range.
Entity members:
StartIndex: The start index of the focused range.
Length: The length of the focused range.
[bookmark: _Toc515968885][bookmark: _Toc512511480]Exceptions
Preview service proxy can throw the following exceptions:
PreviewServiceUnavailableException: Thrown if the caller wants to communicate with the service but it is not available.
NegotiationFailedException: Thrown from the proxy’s constructor if the protocol version negotiation fails.
PreviewToolNotConnectedException: Thrown if the caller wants to communicate with the service but the preview tool is not yet connected.
PreviewToolAlreadyConnectedException: Thrown if the caller wants to connect to the preview service but it has already connected.

[bookmark: _Toc515968886]Demo preview tool
The SDK contains a demo preview tool. It has graphical user interface and can be used to play with the API to see how it works. Apart from this, the customers can investigate the source code of the application (it is written in C#) to see, how a preview tool should communicate with the API using the .NET library. The following sections describe the functions of the test client.
[bookmark: _Toc512511481][bookmark: _Toc515968887]The main window
On the main window of the test client the user can specify the endpoint address he/she would like to connect to. It can be the Named pipe or the REST base address as well. The terminal server session id will be automatically attached to the specified endpoint address. The messages sent by the memoQ client will be logged into the log area.
[image:]
Once the proxy is created the users will be able to communicate with the preview tool service of the memoQ client. The fields with bold labels are mandatory fields on the below dialogs.
[bookmark: _Toc512511482][bookmark: _Toc515968888]Register preview tool
If the user clicks on the “Register preview tool” button, then he/she will be able to send registration requests. Each line in the field “Required properties” represents one property name.
[image:]
[bookmark: _Toc512511483][bookmark: _Toc515968889]Connect preview tool
If the user clicks on the “Connect preview tool” button, then he/she will be able to send connection requests.
[image:]
[bookmark: _Toc512511484][bookmark: _Toc515968890]Change runtime settings
If the user clicks on the “Request change runtime settings” button, then he/she will be able to send change runtime settings requests. The “Preview tool id” field is enabled only if the preview tool has not been connected yet. The request acts as an implicit connection request in this case. The field is disabled and contains the id of the connected preview tool if it has already been connected. Each line in the field “Required properties” represents one property name.
[image:]
[bookmark: _Toc512511485][bookmark: _Toc515968891]Request content update
If the user clicks on the “Request content update” button, then he/she will be able to send content update requests. The “Preview tool id” field is enabled only if the preview tool has not been connected yet. The request acts as an implicit connection request in this case. The field is disabled and contains the id of the connected preview tool if it has already been connected. Each line in the field “Preview part ids” represents one preview part id and each line in the field “Target language codes” represents one target language code.
[image:]
[bookmark: _Toc512511486][bookmark: _Toc515968892]Request change highlight
If the user clicks on the “Request change highlight” button, then he/she will be able to send change highlight requests. The “Preview tool id” field is enabled only if the preview tool has not been connected yet. The request acts as an implicit connection request in this case. The field is disabled and contains the id of the connected preview tool if it has already been connected. The user can specify with the help of the checkboxes whether he/she would like to send the corresponding member (please note that empty members are different from not sent members).
[image:]
[bookmark: _Toc512511487][bookmark: _Toc515968893]Request preview part id update
If the user clicks on the “Request preview part id update” button, then he/she will be able to send preview part id update requests. The “Preview tool id” field is enabled only if the preview tool has not been connected yet. The request acts as an implicit connection request in this case. The field is disabled and contains the id of the connected preview tool if it has already been connected.
[image:]
[bookmark: _Toc512511488][bookmark: _Toc515968894]Disconnect preview tool
If the user clicks on the “Disconnect preview tool” button, then he/she will be able to send disconnect requests.
43

image1.png

image2.jpg

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

