
MEMOQ SERVER CMS API

API AND SDK DOCUMENTATION

LEGAL

Author: memoQ Translation Technologies

Copyright notice: Produced by (P) memoQ Zrt. This document is the intellectual property of memoQ Zrt. Reproduction
of this document, either in whole or in parts, and including but not limited to analogue and elec-
tronic copying, distribution and storage is allowed only to the extent described by respective agree-
ments or upon prior written permission issued by memoQ.

DOCUMENT HISTORY

VERSION TYPE DATE AUTHOR CHANGES

1.00 Working 2017-07-06 Gábor Nagy API reference.

1.01 Working 2017-07-10 Gábor Nagy Authentication, location header

1.02 Working 2017-07-22 Zoltán Benedek Client name and e-mail is returned. List of languages.
List of language pairs. Language pair related error
codes.

1.03 Working 2017-08-22 Zsolt Paral New notification system

1.04 Published 2018-11-23 Gusztáv Jánvári Adding conceptual and logical design. Adding sample
implementation’s documentation. FAQ.

1.06 Working 2020-12-17 Bence Szalai Identify integration partners for API usage telemetry

2.00 Published 2020-12-17 Bence Szalai Publishing current version

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 2 / 44

TABLE OF CONTENTS

1. ABOUT 4

1.1. Structure of the Document 4

1.2. Related Stuff 4

1.3. Updates 4

2. CONCEPTUAL DESIGN 4

2.1. System Landscape 4

2.2. Entities 6

2.2.1. Jobs 8

2.3. Workflows 10

2.3.1. CMS Connection Lifecycle 10

2.3.2. CMS Connection Management 13

2.3.2/A Establish Connection 13

2.3.2/B Editing CMS Connections 14

2.3.2/C Deleting CMS Connections 14

2.3.3. Translation via memoQ 14

2.3.3/A Translation in memoQ 17

Automated Job Processing and File Import 20

Manual Job Processing and File Import 20

ReImport and Relocation 21

Job Delivery 21

2.3.3/B Cancel Job 22

2.3.3/C Delete Job 22

2.3.4. Recap 22

3. COLLABORATION PROTOCOLS 23

3.1. Connection Registration 23

3.1.1. Check Connection Health 23

3.2. Project and Job Management 25

3.2.1. Submit Orders and Jobs 25

3.2.2. Deliver Jobs 27

3.2.3. Cancel Jobs 28

3.3. Miscellaneous 30

3.3.1. Get Job Status Information 30

3.3.2. Get Client Information 31

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 3 / 44

3.3.3. Get Supported Languages 32

3.3.4. Get Language Pairs Supported by the Connection 33

4. API REFERENCE 34

4.1. Authorization 34

4.2. Integration partner 34

4.3. Connection Management 35

4.3.1. Client information 35

4.3.2. Get Language Codes 35

4.3.3. Get Supported Language Pairs 35

4.4. Order Management 36

4.4.1. Create Order 36

4.4.2. Update Order status 36

4.4.3. Get Order information 36

4.4.4. List Orders 36

4.5. Job Management 36

4.5.1. Submit Job 36

4.5.2. Update Job Status 37

4.5.3. Get Job Information 37

4.5.4. Get Order Scope 37

4.5.5. Get Translation 37

4.6. Notifications 38

4.6.1. Notification on Job Status Change 38

4.6.2. Test Notification 38

4.7. Error handling 38

5. SAMPLE CMS CONNECTOR APPLICATION 40

5.1. Configuring the Application 40

5.2. Using the Application 42

5.2.1. Jira Mode 42

5.2.2. Local Folder Mode 43

5.3. Source Code 43

6. FREQUENTLY ASKED QUESTIONS 44

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 4 / 44

1. ABOUT
This document describes how CMS Connectors can be integrated with memoQ Server’s CMS
Gateway using its CMS API. The API is based on REST technology.

A NOTE ON FIGURES

The document may contain large diagrams and details may be hard to catch. Feel free to
zoom into the relevant pages, all such figures are vector graphics.

1.1. STRUCTURE OF THE DOCUMENT
Chapter 2, Conceptual Design introduces you to the world of memoQ CMS integration by pre-
senting the system landscape, the key entities involved in the collaborations and the work-
flows that can be facilitated with such integrations.

Workflows consist of les and more complex activities or, in other terms, operations and col-
laborations. Chapter 3, Collaboration Protocols, as a logical design, takes the collaborations
defined in the workflows, and presents the sequence of message exchanges to perform in or-
der to perform a collaboration.

The description of operations involved in the collaborations refer to the description of sepa-
rate requests, collected under chapter 4, API Reference, as a means of implementation-level
design.

The document is completed by a set of Frequently Asked Questions in chapter 6.

1.2. RELATED STUFF
The documentation is accompanied by a sample CMS Connector implementation, discussed in
chapter 5, Sample CMS Connector Application.

1.3. UPDATES
Please note that this documentation, the sample implementation and memoQ Server are all
evolving products and may change time to time. It is recommended to regularly check if there
is a newer version of this API documentation or the sample implementation on memoQ’s
website memoq.com.

2. CONCEPTUAL DESIGN

2.1. SYSTEM LANDSCAPE
The CMS Gateway is a component of memoQ Server. The Gateway exposes an API, called the
CMS API, which can be used by third-party applications, called CMS Connectors, to facilitate
content transfer between third-party systems (CMS systems, proprietary systems or data-

https://memoq.com/

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 5 / 44

bases, or file systems; collectively referred to as CMS systems) and memoQ Server. The pur-
pose of this content transfer is to submit translatable contents to memoQ Server and down-
load translated content from memoQ Server. Unless the CMS Connector functionality is built
into the CMS System, it is the CMS Connector’s responsibility to obtain translatable contents
from the CMS system and deliver translated contents to that CMS system.

NOTES:

 Some third-party systems may be enhanced to connect to the CMS API, some may need an
external connector. It is up to the developer party whether the CMS API client is imple-
mented as part of the third-party system (referred to as built-in connector functionality) or
as an external connector.

 memoQ does not contain any built-in connectors and will likely not ship any with memoQ.

 OnTheGoSystems, the vendor of the WordPress localization platform WPML has devel-
oped a connector to WordPress via WPML. This can be used to connect WordPress sites to
memoQ Server via OnTheGoSystems, and to automate the localization of WordPress sites.

Figure 1. Architecture of CMS integration solutions

cmp Generic CMS integrations

memoQ Server / LSP domain

Translation Buyer's domain

Translation Buyer's domain

memoQ Server

memoQ CMS Gateway

CMS API

Third-party system

Connector developer's component

memoQ component

Legend
CMS System

CMS System with built-in

connector functionality

External CMS

Connector

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 6 / 44

For the sake of the reference and the example, the situation with the existing WordPress inte-
gration is somewhat different in that the external CMS connector component is implemented
in the middleware of its vendor, so the architecture looks like this:

Figure 2. Architectural view of WordPress-memoQ integration via WPML Translation Proxy

2.2. ENTITIES
This chapter outlines the key entities related to the CMS Gateway and API to provide a com-
mon understanding of the underlying concepts and processes. First let’s take a look at the do-
main model, explained below the diagram.

cmp WordPress integration via WPML

memoQ Server / LSP domain

WordPress intance / Translation Buyer's domain

OTGS (WPML) domain (internet)

WordPress

WPML Translation Proxy

WPML Core

memoQ Server

memoQ CMS Gateway

WordPress

WPML component

memoQ component

Legend

CMS API

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 7 / 44

Figure 3. CMS domain model

When a specific memoQ Server and a CMS system of a The Translation Buyer is integrated, a
so-called CMS Connection is created, which contains information about that connections,
such as the supported languages or the end-customer’s name. After a connection is estab-
lished, the Translation Buyer can submit translation orders in the form of batches to memoQ
Server. Batches do not survive connections: if a connection is deleted, it’s existing batches are
deleted as well. Note that we currently have some ambiguity in our terminology: in the API
level, batches are called projects. This will likely be changed in the future, and a new term, or-
der will be introduced to better reflect the purpose of this construct.

Batches contain jobs, defined and submitted by the CMS Connector to memoQ. Jobs are task
containers, consisting of some metadata like source and target language, deadline, file type,

class CMS Entities

Batch

Job

CMS Connection

memoQ Project

CMS Project

«dataType»

Language pair

- source language

- target language

constraints

{source language != target language}

File

Workflow

Project template

+language pairs

1..*

{p, q in language_pairs =>

p.source_language ==

q.source_language}

+workflows

0..*

{p, q in workflows, l is language pair: l in

p.language_pairs & l in q.language_pairs => p == q}

Automated processing+host

1

+source documents 0..*

Translating
+processing project

0..1

+source file 1

Defining payload

+container 1
Definition of workflow

and configuration

+project template 1

+jobs
1..*

{frozen}

Order scoping

+ordered in 1

{frozen}

+orders 0..*

Ordering

+origin 1

{frozen}

Processing definition

+project template 1

+supported language pairs

1..*

+translated documents

0..*
Delivery

+producing project

1

+language pair

1

+translated file0..1

Defining delivery

+deliverable of
1

/Language pair definition

{Document d => d.language_pair =

d.container.language_pair}

+language pair

1

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 8 / 44

and a source file to translate (the payload), and the translated file. This translated file shall be
downloaded by the CMS Connector.

Jobs received from CMS Connections are processed in CMS projects. A CMS project is similar
to regular memoQ projects, with some key exceptions:

 CMS projects can only contain files defined in CMS jobs.

 Delivery to the CMS system can be initiated for files in CMS projects only.

Users can define workflows for CMS Connections. Workflows define a set of source and target
language pairs and a project template. When a new batch of jobs is received over that partic-
ular CMS connection, the source files of jobs matching the language pairs supported by the
workflow will automatically be processed by the attached project template.

The following rules apply for source and target languages:

 A CMS connection can support any language pairs. This can be defined by the memoQ
Server Administrator for each connection.

 Each job has one source and one target language specified. Batches may contain jobs with
different language pairs.

 A CMS project can only have one source language, similarly to other memoQ projects, and
support any number of target languages.

 Workflows support specific language pairs, and these form a subset of the language pairs
supported by the corresponding CMS Connection.

 Each particular language pair can only be supported by one workflow within a CMS con-
nection.

 The source and target language in a language pair can never be the same—similarly to
other parts of memoQ.

2.2.1. JOBS
The key component of the domain model is the CMS job, or job, for short. Jobs are the assign-
ments the end customer (the user of the connected system) submits to the service provider.

NOTE: Whether or not such an assignment means actually ordering the translation depends
on the provider. They can set up memoQ in a way that new jobs are automatically pushed
into the translation workflow, but they can also set it up in a way that only analysis is per-
formed on the jobs, and then the parties can negotiate out of this integration solution
whether or not the job is actually ordered.

CMS jobs have some relevant properties, some of them mentioned in the preceding section:

 One source and one target language

 The file containing the contents to translate (the translatable)

 The file containing the translated content (the deliverable)

 The specification of the content type (file type)

 Deadline – note that memoQ currently disregards the deadline

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 9 / 44

Practically the translation service provided by the provider to the user of the connected sys-
tem is organized around jobs: jobs are received, processed and delivered. The whole system,
however, is a bit more complex, and although much of a job’s life is internal to memoQ, inte-
grator parties may have a better understanding of the integration after learning the life of
these jobs. This life is summarized in the following state machine.

Figure 4. CMS Job states

KEY NOTES

 Jobs can be processed manually and automatically on the memoQ side.

 Jobs can be delivered manually and automatically on the memoQ side.

 Jobs of a memoQ project can be delivered at once, or one by one, as each file completes
its workflow within memoQ. In both cases, the CMS Connector needs to download deliver-
ables one by one.

stm Job States

Containing order fully submitted

New

Import failed

In progress

Completed

Delivered

In delivery

entry / Notify CMS Connector

Deleted

Cancelled

entry / Notify CMS Connector

Export failed

Delivery failed

deletion by

PM

reimport to

project [failed]

reimport to project

[succeeded]

cancellation by PM

reimport to

project [failed]

cancellation by PM

[timeout or

communication error]

delivery requested

cancellation by PM

export completed file

[succeeded]

cancellation by PM

export completed

file [failed]

deletion by PM

delivery

requested

cancellation by PM

cancellation by PM

import to project

[failed]

import to project

[succeeded]

[translation downloaded]

reimport to

project

[succeeded]

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 10 / 44

 memoQ PMs can import the same job’s file as many times as they want: they can perform
reimport if they realize the initial import had unwanted effects; or they can add a translat-
able to a different project for whatever reason.

 memoQ PMs can even import delivered jobs to memoQ projects. If it turns out a delivera-
ble has problems that can be remedied in memoQ (by importing the file with a different
filter, or by fixing some translation or QA errors in the files), they can do so by reimporting
the affected jobs.

 memoQ PMs can deliver a job multiple times. In case of a re-delivery the CMS Connector
shall assume there’s a good reason for that, such as the affected deliverable is fixed, and
shall download the deliverable even if they have downloaded a previous version earlier.

 A job can be cancelled any time until it is not delivered. memoQ notifies the CMS Con-
nector about the cancellation of each job.

 The only other case when memoQ starts to talk to the CMS Connector is when delivery of
a job is initiated automatically or manually. Then the CMS Connector can request the deliv-
erable in a message.

2.3. WORKFLOWS
After discussing the key entities, let’s see how CMS connectors can interact with memoQ in
order to have contents of external systems translated by memoQ. When it comes to CMS in-
tegration, we basically need to differentiate between two things, with their associated work-
flows:

 Establishing connection between memoQ and a third-party system. This is basically a one-
off process for each CMS connection in memoQ. See CMS Connection Lifecycle for details.

 Translating content via memoQ. If we apply a black-box technique and don’t pay attention
to the internal operation of memoQ, this is one key workflow, which can be customized
within memoQ, and involves the transportation of translatable contents to memoQ, the
translation of contents, and the transportation of translated contents back to the CMS
connector. This is detailed in Translation Workflow.

2.3.1. CMS CONNECTION LIFECYCLE
Before being able to submit contents from a CMS Connector to the CMS Gateway via the CMS
API, the connection first needs to be created and registered on both sides. Creation of CMS
connections on memoQ Server is subject to having a proper CMS license (the WordPress inte-
gration license) and to having the CMS Gateway enabled in memoQ Server’s Deployment
Tool.

After successfully establishing connection, content transfer can take place in both directions
as long as the connector is not deleted, and the memoQ Server holds a proper CMS license.

The lifecycle of CMS connections is shown on the following BPMN business process diagram.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 11 / 44

Figure 5. CMS Connection lifecycle workflow

Delete CMS connection

Collaboration with

external system

terminated

Customer wants to

submit new order

Collaboration with

external system

terminated

Translation via memoQ

Collaboration with

external system

terminated

Establish connection

CMS connection and

jobs deleted

Multiple instances

may run in parallel

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 12 / 44

KEY NOTES

 Once a CMS connection is established, translation of contents in memoQ can take place in
a simultaneous manner, meaning that starting a new translation process does not need to
wait for the end of another started earlier.

 Once there’s no need for a CMS connection any longer, it can be deleted.

 If the connection information changes, the registration procedure Establish Connection
needs to be repeated.

 The workflows of translating contents via memoQ is detailed in section Translation via
memoQ.

The following section details the operations related to CMS connections.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 13 / 44

2.3.2. CMS CONNECTION MANAGEMENT

2.3.2/A ESTABLISH CONNECTION
Creating a CMS connection consists of a couple of manual and programmed steps, shown in
the following figure.

Figure 6. Workflow of setting up a CMS connection

KEY NOTES

 The CMS connection first needs to be created in memoQ Server’s Server Administrator dia-
log. As part of the creation process, a secret, called the connection key is created.

 The Server Administrator can then get all information required for the other side to con-
nect to memoQ Server, and submit that information to the CMS Connector’s authorized

Translation agency Customer

memoQ Server Administrator memoQ Server Customer PM CMS Connector

Create CMS connection

Save connection

Retrieve connection info

Receive connection

info from translation

agency

Register memoQ Server

in CMS connector

Send connection health

check message

Connection health

check request

received

Connection key

found?

Approve connection Reject connection
Approval

received
Rejection

received

Connection

established
Failed to establish

connection

Connection

key

Look up received

connection key

Send connection info to

customer

Service

endpoint

address

noyes

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 14 / 44

user, called the Customer PM, in email, for example. The connection information contains,
among others, the connection key and the service endpoint address of the CMS API.

 The Customer PM needs to register this specific memoQ Server instance in the CMS Con-
nector by specifying these details. The CMS Connector may request for other information
based on its sole decision.

 Once connection data is entered, the CMS Connector can (and is recommended to) check
if the connection actually works by saying hello to the memoQ Server instance. To do so, it
needs to submit its connection key to memoQ Server in a connection health check request.

 Based on whether memoQ Server can find a CMS connection with the connection key re-
ceived in this message, it will either approve or reject the connection request in its re-
sponse message.

2.3.2/B EDITING CMS CONNECTIONS
Existing CMS connections can be edited in memoQ. Editing only needs caution when you
want to change the connection key. From the moment on you save a new connection key, the
CMS connector needs to use the new connection key, or the API calls will be ignored. This
may require the re-registration of the memoQ Server in the CMS connector, or editing the
registration info in the CMS connector’s UI, depending on how you implement this. We sug-
gest having an option for replacing connection keys as a user-friendly effort to increase secu-
rity by being able to change the secret time to time or in case of alleged compromise.

In terms of workflows and processes, basically the Establish Connection workflow needs to be
repeated, only that no new records are created, but existing ones are modified.

2.3.2/C DELETING CMS CONNECTIONS
The CMS API does not have any requirements against CMS Connectors for connection dele-
tion, that is, on its sole decision, CMS Connectors can delete connections and de-register
memoQ Servers without sharing any information about this with that particular server in-
stance. Note, however, if there are workflows in progress on memoQ Server, errors may oc-
cur when the CMS Gateway wants to notify the CMS Connector about some events.

CMS connections can be deleted on memoQ Server’s Server Administrator UI. Deleting a CMS
connection irreversibly deletes all jobs ever transferred successfully to the CMS Gateway. De-
leting jobs deletes all the translation files received and translated files created (whether deliv-
ered or not) in the course of processing those jobs, however the translation files imported
into a memoQ projects and their translations existing there are not deleted from memoQ,
having a chance to recover from inadvertent deletions—they can be deleted by deleting the
respective projects, and to store them for later re-use. The CMS Gateway does not notify the
CMS Connector about the deletion, so CMS Connectors should handle cases of disappearing
CMS Gateways and unavailable service endpoints (while the reason of such symptoms can be
some intermittent network issue as well).

2.3.3. TRANSLATION VIA MEMOQ
TERMINOLOGY INCONSISTENCY NOTE. We currently struggle with some inherited terminol-
ogy inconsistency here: orders are named batches in memoQ, and projects in the CMS API’s
world. For now, the three terms are interchangeable. Whenever possible, we’ll use the term

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 15 / 44

order. The following diagram, however, will use all the three terms to help you better under-
stand the current terminology.

Speaking at the highest level:

 CMS jobs are submitted to memoQ Servers in orders. When an order is fully received,
memoQ starts processing the order.

 When memoQ encounters events instructing memoQ to let the CMS Connector know a job
is complete, it will notify the connector.

 The connector needs to download completed jobs with translated contents one by one.

The following diagram shows the workflow in more details.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 16 / 44

Figure 7. Workflow of translation via memoQ

KEY NOTES

 The CMS Connector may provide a means for the customer to scope orders by, for exam-
ple, letting them to select which assets to submit for localization as part of that particular
order. It can, however, use automated solutions to detect new translatable contents. It’s
entirely up to the connector.

 CMS Connector need to start submitting orders by creating a new project on the API,
which is called a batch in memoQ—remember the terminology inconsistency; in the future

Customer

Customer PM CMS Connector

Translation agency

memoQ Server Localization PM

PM wants to

cancel job

Completion

notification

requested
Translation in memoQ

PM wants to

cancel job

Completion

notification

requested

Translation requested

by CMS Connector

Return translated file

Job delivered

Notify CMS Connector of

cancellation

Job cancellation

announced

Want to submit

new order

Scope order Announce start of

assembling new order

(project)

Add job to order

Announce end of

assembling new order

(project)

Create order (batch)

Save job and add to order

Save order (batch)

memoQ Server

started

Cancel job

Send delivery notification
Completion

notification

received

Request translated

content

Cancellation

notification received

Translated content

received

Translation

received

Delete job

Job cancelled

Content type

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 17 / 44

these will likely both called order. The connector then needs to upload jobs one by one,
and when all jobs are uploaded, it shall announce this fact to memoQ so that it knows it
does not need to wait for more jobs and can start processing.

 After an order is received, memoQ processes it. Processing includes the in-memoQ transla-
tion workflow as well. The processing that takes place in memoQ is detailed below in
Translation in memoQ.

 Immediately or some time after jobs are completed, events can trigger memoQ to notify
the CMS connector that some particular jobs are ready for delivery. It’s up to the project
template and the localization PM working in memoQ when such events occur—it may oc-
cur immediately when a job is done, or only when all jobs of an order or a memoQ project
are complete. memoQ sends separate notifications about each completed job.

 Deliver to CMS actions can be added to various events. In an improperly configured
template the action may be added to an event occurring before the translation is ready
(such as, to the After document import event). This might result in unexpected delivera-
bles.

 The CMS Connector needs to download the jobs one by one by sending the appropriate
delivery request to memoQ.

 memoQ PMs can cancel jobs. This is detailed in section Cancel Job.

 CMS Connectors have no option to cancel submitted orders and jobs. This is a business-
level limitation to avoid jobs disappearing from the CMS Dashboard and documents
from memoQ projects. If a job needs to be cancelled by the end-user, they need to
communicate this request to memoQ PM outside this integration.

2.3.3/A TRANSLATION IN MEMOQ
The in-memoQ translation workflow involves the processing of orders. Processing starts when
an order is fully submitted. Jobs are processed one by one, along the workflow shown on the
following diagram.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 18 / 44

Figure 8. Workflow of translation in memoQ

Translation agency

memoQ Server Localization PM

Can job be picked up

by a workflow?

Select workflow's project

template

Add to existing

project based on

project naming

pattern defined in

the template?

Select existing project

PM wants to

process the job

Add to existing

project?

Open project

Select filter configuration

defined in the template

Unsupported file

type

Select default filter

configuration for the file

type

Unsupported file

type

Select job's file to import

Custom filter configuration

defined in the template for

the file type?

TEP workflow

completed

Import error

Export error

«BusinessProcess»

TEP workflow in memoQ

«BusinessProcess»

TEP workflow in memoQ

TEP workflow

completed

Import error

Export error

Template contains

auto-delivery action?

Notify CMS Connector of

completion

PM wants to

deliver job

PM wants to

reimport/relocate the

job's file

Completion

notification

initiated

Select project template

Create new project from

selected template

Job can't be

processed

Job can't be

completed

no

no

yes

yes

no

yes

yes

no

no

yes

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 19 / 44

PROCESS OVERVIEW

1. memoQ checks if there is a workflow configured for the connection with the language
pair of the job.

1.1. If there’s such a workflow, it picks up the job. See what happens in section Auto-
mated Job Processing and File Import below.

1.2. If there’s no such workflow, nothing happens until a memoQ PM decides to add
the job to a project. See what happens in section Manual Job Processing and File
Import below.

2. The file imported from the job will go through the workflow defined in the project
template and eventually controlled by the PM.

2.1. If an event occurs for which a Deliver to CMS automated action is defined in the
project template, automated delivery will take place:

2.1.1. If the automated action is added to a project-level event, such as All
documents of a language complete workflow, memoQ will notify the
CMS Connector that the jobs processed in the project are all ready for
delivery. The CMS Connector can download the jobs one by one.

2.1.2. If the automated action is added to a document-level event, such as
Translator delivers document, memoQ will notify the CMS Connector
that the job containing the file triggering the event is ready for delivery.
The CMS Connector can then download the job.

3. After the process takes place and the job was not delivered, it will show up in the CMS
Dashboard as Completed and wait for manual delivery.

4. The PM can initiate manual delivery of the job. When doing so, memoQ will notify the
CMS Connector that the job is ready, and the CMS Connector can download the trans-
lation.

ADDITIONAL KEY NOTES

 PMs can cancel jobs at any time before delivery (as shown in the diagram in section Trans-
lation via memoQ).

 PMs can reimport jobs. Reimporting to the same project is virtually equivalent to reimport-
ing a file in memoQ, except for that in this case the PM cannot select a different filter con-
figuration than that defined by the template.

 If a different filter configuration is required, the Localization PM needs to edit the corre-
sponding template, or the filter configuration defined in that template before reimport-
ing.

 Reimporting to a different project will move the file to that project and remove it from
the current one.

 PMs can deliver a job multiple times. This is a means of remedy in case of, for example,
communication failures and defective translations. The CMS Connector shall download
such translations as many times as they are reported as ready, since the contents might
have been changed—PMs are allowed to import delivered jobs to memoQ projects. This
lets them fix issues found only after a previous delivery.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 20 / 44

AUTOMATED JOB PROCESSING AND FILE IMPORT
The following happens if a job can be picked up by a workflow:

1. memoQ checks if a new project is to be created or the job shall be added to an exist-
ing one. For that it takes the project naming template of the project template set for
the workflow, and parses the template.

1.1. If no project with the parsed name exists, it will create one, based on the project
template

1.2. Otherwise it will add the job to the project with that name.

2. memoQ then checks the project’s template for filter configurations.

2.1. If a custom filter or filter configuration is set in the template for the file type of
the file contained in the job, it will import the file with that filter configuration.

2.2. Otherwise it will try to find a filter based on the file type, and apply that filter’s
default configuration.

2.2.1. If no such filter exists (unknown filetype), an error is logged, and the job
is not processed. At this point further processing of the job is blocked
until the memoQ PM creates a template which defines a filter and a
configuration for that file type.

3. Now the file is in a memoQ project, where it will go through its workflow defined in
the template and eventually controlled by the PM. Job Delivery actions may trigger
memoQ to announce the completion of jobs.

MANUAL JOB PROCESSING AND FILE IMPORT
The following happens if a job cannot be picked up by a workflow, or if the PM wants to im-
port the job’s file manually to a memoQ project to process it differently, or to move it to an-
other project (relocation):

1. The PM decides if they want to add the job to an existing project or to a new one.

1.1. If they want to add it to a new one, they select the file and create a project
based on a project template of their choice.

1.2. If they want to add it to an existing one, they open the respective project and
select the corresponding command to add new jobs to that project.

2. memoQ then checks the project’s template for filter configurations.

2.1. If a custom filter or filter configuration is set in the template for the file type of
the file contained in the job, it will import the file with that filter configuration.

2.2. Otherwise it will try to find a filter based on the file type, and apply that filter’s
default configuration.

2.2.1. If no such filter exists (unknown filetype), an error is logged, and the job
is not processed. At this point further processing of the job is blocked
until the memoQ PM creates a template which defines a filter and a
configuration for that file type.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 21 / 44

3. Now the file is in a memoQ project, where it will go through its workflow defined in
the template and eventually controlled by the PM. Job Delivery actions may trigger
memoQ to announce the completion of jobs.

REIMPORT AND RELOCATION
Localization PMs have the option to reimport jobs to memoQ projects. This lets them relocate
the jobs to different projects, or to reimport the translatable files after they fixed an issue in
the filter configuration previously used to import the file.

 If the Localization PM wants to reimport a job to the same project: After he template or
the filter configuration is fixed, open the project, and click Add CMS Jobs on the ribbon,
and select the job to reimport.

 If the Localization PM wants to relocate the job to a new project: The PM needs to open
the CMS Dashboard in a memoQ PM client connected to the appropriate memoQ Server
instance, select the job and click Import. Then the above process executes.

 If the Localization PM wants to relocate the job to a different existing project: Open the
project to which you want to relocate the file, click Add CMS Jobs on the ribbon, and select
the job to reimport.

JOB DELIVERY
Job delivery can be automated or manual:

 Automated job delivery. If you want memoQ to automatically announce the completion of
one or more jobs so that the CMS Connector can download the translations and transfer
the translated content to the third-party system, you have to add a Deliver to CMS action
to the appropriate event in a project template. You can add this action to many events,
however not all may make sense. Make sure you add the action to events which only occur
once the workflow is complete. For example, if you want to run a review session on trans-
lations, do not add the action to the Translator delivers document event, but to the Re-
viewer 1 delivers document event or the Reviewer 1 delivers document event, whichever
fits your requirements.

 You can add the action to project-level events such as All documents delivered by trans-
lator or All documents of a language complete workflow. In this case memoQ will an-
nounce the completion of each job defined by the event (that is, when the all docu-
ments of a memoQ project are delivered by translator, or when all documents of a par-
ticular target language are delivered in the examples). Jobs completed earlier will wait
until the criteria is met.

 You can add the action to document-level events, such as Translator delivers document.
In this case memoQ will announce completion as soon as the particular document satis-
fies the criteria and the event is triggered.

 Manual job delivery. Localization PMs can request memoQ to announce completion for
completed jobs, jobs in delivery and delivered jobs any time they want, whether or not the
project template for the project containing the specific job has any Deliver to CMS action
or not. Doing so, memoQ immediately notifies the CMS Connector that the particular jobs
are ready for delivery.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 22 / 44

Which method the translation agency selects depends on their workflows. If they want to de-
liver jobs in the same sets in which they received them, that is, they want to deliver all jobs of
an order at once, they need to create a workflow for all supported languages, and associate a
project template, which incorporates the batch name (order name) in its project naming pat-
tern to make sure each batch (order) goes into a separate project, and shall add a Deliver to
CMS action to an event triggered when all documents are completed.

2.3.3/B CANCEL JOB
Localization PMs working in memoQ can cancel all non-delivered jobs. (To make delivered
jobs to disappear from memoQ, they can delete them.) A cancelled job cannot be processed
again, and the only operation allowed on cancelled jobs is to delete them.

Deleting jobs deletes all the translation files received and translated files created (whether
delivered or not) in the course of processing those jobs, however the translation files im-
ported into a memoQ projects and their translations existing there are not deleted from
memoQ, having a chance to recover from inadvertent deletions—they can be deleted by de-
leting the respective projects, and to store them for later re-use.

memoQ Server notifies the CMS Connector about job cancellations, in a separate message for
each such jobs. The CMS Connector shall not expect job completion notification for cancelled
jobs, and if they try to download the results or get status information on such jobs, an error
message will be returned stating the job is unknown.

2.3.3/C DELETE JOB
PMs can delete delivered and cancelled jobs. Since CMS Connector shall already have been
notified of cancellation, or it must have downloaded the translation by this moment in time,
no notification to CMS Connector shall be sent on deletion.

2.3.4. RECAP
In this section we’ve discussed the high-level workflows related to memoQ’s CMS integration
feature. The next section, as a kind of logical design, presents the communication protocol of
the interoperation.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 23 / 44

3. COLLABORATION PROTOCOLS
This chapter defines the sequence of messages to exchange in order to carry out a workflow
step at logical level. The operations contain UML sequence diagrams with logical-level defini-
tion of operations. Following each diagram, a table explains the messages and maps the logi-
cal operation to actual requests by referring to the appropriate section of implementation-
level design (chapter Implementation – API Description). This section helps you to understand
the logic of the collaboration, while the implementation-level design details the requests to
make at code level.

3.1. CONNECTION REGISTRATION
The registration-related operations only contain one automated collaboration, detailed in the
next section.

3.1.1. CHECK CONNECTION HEALTH

Figure 9. Collaboration protocol of performing connection health check

CHECK CONNECTION

Key parameters connection key

Description The purpose of this message is to check if the connection can be
established with memoQ.

Notes on the response The response code informs the caller if the client could be authen-
ticated on the server and the connection is approved. An appro-
priate error is returned for rejected connections so that the caller
knows the request reached the server, only the connection key

CMS Connector CMS Gateway

alt Authorization

[connection key found]

[connection key not found]

Check connection(connection key)

:unknown connection key

:OK

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 24 / 44

was wrong. You can use the returned info to see if it matches with
those registered for this connection in the CMS Connector.

Implementation The operation is implemented by the /client GET request. See Cli-
ent information.

EVOLUTION NOTE: In the future, a specific register request may
be added to the CMS API.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 25 / 44

3.2. PROJECT AND JOB MANAGEMENT
This section contains the collaborations for creating projects, getting status information and
downloading deliverables.

3.2.1. SUBMIT ORDERS AND JOBS

Figure 10. Collaboration protocol of submitting orders

Order submission consists of announcing the beginning of order creation, submitting the jobs
making up the order, and announcing the end of job submission. The operations are detailed
in the next sections.

START ORDER CREATION

Key parameters order name, deadline, callback URL

CMS Connector

(from Class Model)

CMS Gateway

(from Class Model)

memoQ Server

(from Class Model)

loop Submit jobs one after the other

[for all jobs in the order]

loop Process received jobs

[for all jobs in the order]

alt Workflow processing

[job can be picked up by workflow]

Start order creation(order name, deadline, callback URL)

Import job to memoQ project()

:order id

Finish order creation(order id)

:job id

Add job to order(order id, name, language

pair, url, content type, file)

Save order()

:ok

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 26 / 44

Description The CMS Connector first needs to announce it wants to submit an
order. memoQ Server prepares to receive new jobs.

memoQ will use the provided callback URL for announcements
coupled with job state changes.

Note that memoQ currently ignores the deadline.

Notes on the response memoQ returns the order ID required for acting upon the order
later

Implementation The operation is implemented by the /projects POST request. See
Create Order.

EVOLUTION NOTE: In the documentation and the source code of
the API, order is called project. This is planned to be replaced with
order.

ADD JOB TO ORDER

Key parameters order id, name, language pair, url, content type, file

Description This operation adds a job to the order being submitted. The job is
added to the specified order.

The job definition includes the gzipped translatable file as an at-
tachment, the type of the file (in the form of file extensions), the
source and target language, and the URL on which the source is
available (for previewing during translation).

This operation needs to be invoked for each job in the order’s in-
tended scope.

Notes on the response memoQ returns the job ID required for acting upon the job later.

If the order specified does not exist or is closed, error is returned.

Implementation The operation is implemented by the /projects/{projectId}/jobs
POST request. See Submit Job.

EVOLUTION NOTE: In the documentation and the source code of
the API, order is called project. This is planned to be replaced with
order.

FINISH ORDER CREATION

Key parameters order id

Description Once all jobs are submitted, the CMS Connector needs to let know
memoQ Server about this by closing the order creation.

Notes on the response memoQ lets the CMS Connector know if the operation succeeded,
or what error occurred.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 27 / 44

Implementation The operation is implemented by the /projects/{projectId} PATCH
request. See Update Order status.

EVOLUTION NOTE: In the documentation and the source code of
the API, order is called project. This is planned to be replaced with
order.

3.2.2. DELIVER JOBS
As said in Translation via memoQ, delivering jobs takes two steps: the CMS Gateway notifies
the CMS Connector via the CMS API that a job is completed and is available for delivery. In re-
sponse, the CMS Connector can download the translation.

Figure 11. Collaboration protocol of delivering jobs

NOTIFY ON COMPLETION

Key parameters job id

CMS Gateway

(from Class Model)

CMS Connector

(from Class Model)

memoQ Server

(from Class Model)

Invoked manually by loc

PM or automatically by a

template auto-action

alt Try to deliver translation

[job & file still exists and is not cancelled]

[else]

Set job status to In Delivery()

:ok

Confirm delivery(job id)

Get translation(job id)

Initiate delivery(job, translation of job's file)

:error message

Set job status to delivered()

:ok

Notify on completion(job id)

:translated file

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 28 / 44

Description The notification is sent to the callback URL specified for the con-
tainer order. The CMS Connector shall acknowledge the reception
of the notification.

If you prefer a pull model and don’t want to use notifications be-
cause, for example, you don’t want to make CMS Connector pub-
licly available, and therefore you don’t specify a real callback URL,
the CMS Connector won’t receive such notifications. The jobs in
this case may appear as In Delivery or Delivery Error in memoQ
until the CMS Connector downloads them.

Notes on the response The CMS Connector needs to confirm the acknowledgement of
this completion event. If the job cannot be found, it shall return an
appropriate error.

Implementation The operation is implemented by the /notification POST request,
submitted by memoQ Server, and the TranslationReady status
submitted in the request means the notification is a completion
notification. See Notification on Job Status Change.

GET TRANSLATION

Key parameters job id

Description The CMS Connector can download the translation of the job speci-
fied in the job id parameter using this request.

Notes on the response The response contains the translated file in gzipped format.

Implementation The operation is implemented by the /jobs/{translation-
JobId}/translation GET request. See Get Translation.

CONFIRM DELIVERY

Key parameters job id

Description The CMS Connector shall inform memoQ Server about the suc-
cessful download so that it can mark the job as Delivered in
memoQ.

Notes on the response Just an acknowledgement of the reception of the confirmation.

Implementation The operation is implemented by the /jobs/{translationJobId}/
PATCH request, with the NewStatus parameter set to DeliveredTo-
Source. See Update Job Status.

3.2.3. CANCEL JOBS
Remember, only memoQ Server can cancel CMS jobs, the CMS Connector cannot. The idea
behind is that the translation process might have been started by the translation agency, and
cancelling a job would pose the risk that the agency works on cancelled tasks. If the customer
wants to cancel a job, they need to contact the localization TM, negotiate the details, and the
localization PM will cancel the job.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 29 / 44

Figure 12. Collaboration protocol of cancelling a job by memoQ Server

NOTIFY ON COMPLETION

Key parameters job id

Description The notification is sent to the callback URL specified for the con-
tainer order. The CMS Connector shall acknowledge the reception
of the notification.

If you prefer a pull model and don’t want to use notifications be-
cause, for example, you don’t want to make CMS Connector pub-
licly available, and therefore you don’t specify a real callback URL,
the CMS Connector won’t receive such notifications. The jobs will
remain cancelled in memoQ.

Notes on the response The CMS Connector needs to confirm the acknowledgement of
this cancellation. If the job cannot be found, it shall return an ap-
propriate error.

Implementation The operation is implemented by the /notification POST request,
submitted by memoQ Server, and the Cancelled status submitted
in the request means the notification is a completion notification.
See Notification on Job Status Change.

CMS Connector

(from Class Model)

CMS Gateway

(from Class Model)

alt Acknowledge request

[job can be found by id]

[else]

:ok

Cancel job(job id)

:job not found

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 30 / 44

3.3. MISCELLANEOUS

3.3.1. GET JOB STATUS INFORMATION
Once the CMS Connector successfully submitted an order, it can query the status of the con-
tained jobs. You can use the status to route your logic—for example you can try to download
a job if it’s complete, if you prefer a pull model for delivery instead of the push model in
which memoQ notifies you of job completion.

Figure 13. Collaboration protocol of getting CMS job status information

GET JOB STATUS

Key parameters job id

Description Submit a request for the status of a particular job.

Notes on the response memoQ returns all information about the job, including its status.

Implementation The operation is implemented by the /jobs/{translationJobId} GET
request. See Update Order status.

CMS Gateway

(from Class Model)

CMS Connector

(from Class Model)

Get job status(job id)

:status

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 31 / 44

3.3.2. GET CLIENT INFORMATION
A metadata of CMS Connections in memoQ is the client. A client is a record of an ID, a name
and an email address, and has currently no purpose in memoQ, it’s just descriptive data. You
can use client information to map orders and jobs to clients.

WHAT IS CLIENT INFORMATION GOOD FOR?

Client information was implemented to conform to the business model of our first CMS in-
tegration partner, OnTheGoSystems (OTGS), the vendor of the leading WordPress localiza-
tion platform, WPML. OTGS uses client id in WPML this way:

 Translation agencies can use WPML’s integration services for free, but they can opt-in
to an affiliate program. In exchange for getting recommended by WPML in WPML’s
pages, increasing the chance that WPML translation buyers contact them, participating
agencies pay a (small) fee for the number of words transmitted to them for translation.
OTGS wanted to use weighted wordcounts to avoid double charging for what is trans-
lated only once.

 OTGS creates a separate TM for each client within the realm of each WPML customer.
That is, if a translation agency works for 2 customers, and the first customer has 3 web-
sites, while the second has only 1, then two TMs are created.

 Contents of CMS jobs submitted from any of the 3 websites of the first client are loaded
into the first TM, and the contents of translations jobs submitted from the website of
the second client are loaded into the second TM.

 Before adding the contents to the TM, WPML performs an analysis on the contents to
be added to the TM and applies a weighted cost model to calculate effective word
count.

 This way translation agencies need to pay after the weighted word count at client level.
If the same segment is submitted from website 1 and 3 of the first client in this exam-
ple, only the first occurrence will increase the fee paid to WPML, as they likely can
charge it only once to the client.

 If the same segment (such as “All rights reserved.”) is submitted from the website of
the second client, the full word count will contribute to the fee calculation.

 This also means that if a job needs to be submitted the second time for an error, the
agency does not need to pay double price.

It’s up to you whether you want to use a consumption measure model like this or not.
memoQ supports this by making client a mandatory property of connections, including a
client ID unique on memoQ Server instance-level, client name and email, which you can
use for communication.

Customers can enter client IDs manually, so if the CMS Connector uses client IDs, the
translation agencies may be requested to use those IDs, and multiple instances of memoQ
Servers can use the same client ID as well.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 32 / 44

Figure 14. Collaboration protocol of getting client information

GET CLIENT INFORMATION

Key parameters none

Description Request for client information

Notes on the response memoQ returns the unique ID, the name and the contact email
address of the client associated with the CMS Connection used to
communicate between the caller instance of the CMS Connector
and the called instance of memoQ Server.

Implementation The operation is implemented by the /client GET request. See Cli-
ent information.

3.3.3. GET SUPPORTED LANGUAGES
CMS Connectors can query the set of supported languages by memoQ. The response contains
the list of three-letter language codes in the ISO format. The CMS Connector needs to specify
these language codes in jobs, or memoQ Server won’t be able to process the jobs. If a lan-
guage is marked as only-target, it cannot be the source language of jobs, or memoQ Server
will fail to process the jobs.

The purpose of getting language codes is, therefore, to speak the same language and provide
compatibility between the integrated system. If CMS Connector knows these codes, the oper-
ation does not need to be performed, but be aware that the set of supported languages may
still increase in memoQ time to time.

Figure 15. Collaboration protocol of getting list of supported languages

CMS Gateway

(from Class Model)

CMS Connector

(from Class Model)

Get client information()

:client id, name, email

CMS Gateway

(from Class Model)

CMS Connector

(from Class Model)

Get supported languages()

:set of languages and their roles

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 33 / 44

Note: If you want to know the language pairs supported by a specific CMS Connection, look
for Get Language Pairs Supported by the Connection below.

GET SUPPORTED LANGUAGES

Key parameters none

Description The operation gets the list of language codes supported by
memoQ Server for the CMS Connector to use them in jobs.

Notes on the response A list of ISO 3-letter language codes and the role (source and tar-
get, or target only) of each language

Implementation The operation is implemented by the /languages GET request. See
Get Language Codes.

3.3.4. GET LANGUAGE PAIRS SUPPORTED BY THE CONNEC-
TION

The administrators of memoQ Server needs to specify the source and target languages sup-
ported when creating a CMS connection (and they can later edit this information). The CMS
Gateway will only accept jobs in any of the possible language pairs based on the supported
source and target languages. You can get this list with this operation. If you submit a job in a
language pair not present in the list, the CMS Gateway will deny accepting it.

Figure 16. Collaboration protocol of getting the list of language pairs supported by the CMS
connection

GET SUPPORTED LANGUAGES

Key parameters none

Description The operation gets the list of language pairs enabled on the CMS
Connector’s CMS connection in memoQ Server.

Notes on the response A list of ISO 3-letter language code pairs.

Implementation The operation is implemented by the /languagePairs GET request.
See Get Supported Language Pairs.

CMS Gateway

(from Class Model)

CMS Connector

(from Class Model)

:list of language pairs

Get supported language pairs()

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 34 / 44

4. API REFERENCE
This chapter serves as a reference for the methods provided by the CMS API. The scenarios in
which one or the other method can be used is described in the previous chapter.

We’ve created a reference implementation of CMS Connectors. Read more in chapter 5, Sam-
ple CMS Connector.

SWAGGER: EXPLORE IMPLEMENTATION-LEVEL DOCUMENTATION

The implementation-level documentation is incorporated in the API’s source code, and can be
exposed using a tool called Swagger. It exposes a browser-based user interface which lets you
consult the parameters and return values of requests along with their documentation, and
also to try out the calls yourself.

Swagger can be accessed at http://localhost:8080/memoqservercmsgateway/v1/swagger/ on
the computer running memoQ Server. For each method below, we also disclose the direct
Swagger URL displaying the details of that method. If you read this documentation on the com-
puter running memoQ Server, just click the links, otherwise copy them to a browser running on
the computer hosting memoQ Server.

CONTRADICTIONS

Should you find any information on the Swagger UI that contradicts with this document, note
that the information on Swagger’s UI is authoritative, since it comes from the actual source
code. In such cases, please report the contradictions to memoQ Support so that we can fix
the documentation. Thank you.

4.1. AUTHORIZATION
The caller has to send the connection key in the authorization header of each request submit-
ted to memoQ Server. The content of the header field has to be in the following format:

CMSGATEWAY-API [connection key]

If you would like to call the API from Swagger, then you have to type the secret into the api_key
field in the above mentioned format:

Figure 17. How to enter the connection key in Swagger

4.2. INTEGRATION PARTNER
The caller can provide the name of the integration partner which memoQ uses to identify in-
tegration partners and systems using the API for telemetry purposes. Telemetry is based on
memoQ's policy, therefore it is anonymous and requires opt-in.

The caller can send the integration partner’s name in a header of each request submitted to
memoQ Server. The header’s name must be “IntegrationPartner” and its content should be
the name of the integration partner.

http://localhost:8080/memoqservercmsgateway/v1/swagger/

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 35 / 44

4.3. CONNECTION MANAGEMENT
This section lists the requests used to query connection-level information.

4.3.1. CLIENT INFORMATION
GET /client

The caller can access information about the client through the API (client id, client name, and
email) under the client resource name (relative URL).

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Cli-
ent_GetClientId

4.3.2. GET LANGUAGE CODES
GET /languages

Language codes in all cases are three+(two) letter ISO language codes, such as fre, eng, and
eng-US. To find out what are the supported language codes and what their mapping to other
language codes are, see LanguageAllData.xml. The three-letter language codes conform to ISO
639, and the two-letter country codes conform to ISO 3166. Both standards have different ver-
sions (e.g.: ISO 639-1, ISO 639-2, etc.), and memoQ may use a mixture of these. You can get
information about the languages supported by the memoQ Server by submitting this request.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Cli-
ent_GetSupportedLanguages

NOTE: All language codes listed in LanguageAllData.xml are supported as target languages, but
not all as source languages: target-only languages have the OnyTarget field set to true. The
returned list of languages is independent from the client, it includes all languages supported by
the memoQ Server product.

4.3.3. GET SUPPORTED LANGUAGE PAIRS
GET /languagePairs

Language pairs are specific for CMS connections. Make sure you only submit jobs in the sup-
ported language pairs, since jobs of other language pairs won’t be accepted.

The returned list is empty if the administrator of memoQ Server did not specify any source and
target languages. In this case the given CMS connection supports all combination of all lan-
guages supported by memoQ Server.

The CMS Connector may provide an option to its users and/or automatism to submit this re-
quest on-demand or in response to errors to see if the set of the supported language pairs have
been changed in memoQ Server.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Cli-
ent_GetConnectionLanguagePairs

http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetClientId
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetClientId
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetSupportedLanguages
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetSupportedLanguages
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetConnectionLanguagePairs
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Client/Client_GetConnectionLanguagePairs

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 36 / 44

4.4. ORDER MANAGEMENT
This section lists the requests related to managing orders (remember, orders are currently
called projects in the API).

4.4.1. CREATE ORDER
POST /projects

Creates a new order based on the request parameters and returns the created order in the
response. The response’s location header contains the URL of the order created.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_CreateProject

4.4.2. UPDATE ORDER STATUS
PATCH /projects/{projectID}

Updates the status of an order based on the request parameter. The single possible status for
now is Committed, which tells the CMS Gateway all jobs of the order has been submitted.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_UpdateProjectStatus

4.4.3. GET ORDER INFORMATION
GET /projects/{projectID}

Gets information about an order specified in the request parameter.

Details http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_GetProject

4.4.4. LIST ORDERS
GET /projects

Lists all the orders of this CMS connection existing on CMS Gateway.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_GetProjects

4.5. JOB MANAGEMENT
This section lists the requests available to act upon CMS jobs.

4.5.1. SUBMIT JOB
POST /projects/{projectId}/jobs

Submits a new CMS job for an order based on the request parameter, and returns the created
job in the response. The request’s content type has to be multipart/form-data. The first part
has to contain information about the new job, and its name has to be translationJob. The sec-
ond part of the request has to contain the file to be translated and its name has to be file. The

http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_CreateProject
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_CreateProject
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_UpdateProjectStatus
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_UpdateProjectStatus
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_GetProjects
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_GetProjects

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 37 / 44

file is recommended to be gzipped, and in this case the MIME type shall be application/x-
gzip. The response’s location header contains the URL of the job created.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_CreateTranslationJob

4.5.2. UPDATE JOB STATUS
PATCH /jobs/{translationJobId}

Updates the status of a translation job based on the request parameter. This is currently used
to let memoQ Server know the CMS Connector managed to download the translation of a com-
pleted job.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Job/Job_Up-
dateTranslationJobStatus

4.5.3. GET JOB INFORMATION
GET /jobs/{translationJobId}

Gets information about a translation job based on the request parameter. You can use this
request to check and match the job details stored in memoQ and in the CMS Connector, and
to get progress information on job processing.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/in-
dex#!/Job/Job_GetTranslationJob

4.5.4. GET ORDER SCOPE
GET /projects/{projectId}/jobs

Lists the translation jobs of an order based on the request parameter. You can use this request
to check if all jobs you wanted to add to the order are actually part of the order. Deleted jobs
are not part of the list returned.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Pro-
ject_GetTranslationJobs

4.5.5. GET TRANSLATION
GET /jobs/{translationJobId}/translation

This request can be used to download translation of a job based on the request parameter. In
the job is not complete, an error will be returned. Otherwise, the response contains the trans-
lated file itself if gzipped format.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/in-
dex#!/Job/Job_GetTranslation

http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Job/Job_UpdateTranslationJobStatus
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Job/Job_UpdateTranslationJobStatus
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Job/Job_GetTranslationJob
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Job/Job_GetTranslationJob
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_GetTranslationJobs
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Project/Project_GetTranslationJobs

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 38 / 44

4.6. NOTIFICATIONS

4.6.1. NOTIFICATION ON JOB STATUS CHANGE
POST /notification

The CMS Gateway sends a notification if the status of a job becomes complete (Translation-
Ready at code level) or cancelled (Cancelled at code level) in the CMS gateway. The CMS gate-
way sends the details in the POST request body to the callback URL provided during order cre-
ation.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Notifica-
tion/Notification_TranslationJobNotificationCallback

4.6.2. TEST NOTIFICATION
POST /test/jobs

There is an additional notification for testing purposes that also contains the specification of
the notification object. You can trigger the mentioned notification from the CMS Gateway
Mockup Server application, if you send a request to this test endpoint. In addition, notifications
will be triggered during normal operation on both the mocked and the actual gateway imple-
mentations.

Details: http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/in-
dex#!/Test/Test_TriggerTranslationJobNotification.

All notifications are sent to the same shared callback URL as a JSON object. Different notification
types are distinguished by the Type property and all notification-specific data is sent in the
Payload property. An example for the complete JSON response:

{

 "Type": "TranslationJobStatusChanged",

 "Payload": {

 "TranslationJobId": 0,

 "NewStatus": "Delivered"

 }

}

4.7. ERROR HANDLING
The Swagger documentation contains the possible HTTP status codes for each requests. If any
problem occurs during processing a request, the CMS Gateway returns a JSON object describing
the problem. This allows to distinguish different issues under the same HTTP status code. The
returned object has the following members:

• ErrorCode: The code uniquely identifies the problem.

• Message: The detailed description of the problem.

The table below contains the possible http status codes, error codes and messages.

http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Notification/Notification_TranslationJobNotificationCallback
http://localhost:8080/memoqservercmsgateway/v1/swagger/ui/index#!/Notification/Notification_TranslationJobNotificationCallback

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 39 / 44

STATUS CODE ERROR CODE MESSAGE

UNAUTHORIZED (401) AuthenticationFailed Authentication failed,

please check provided

secret.

FORBIDDEN (403) ProjectDoesNotBelongToTheUser Project does not be-

long to the user which

was found based on

the provided secret.

NOTFOUND (404) ProjectDoesNotExist Project does not exist.

CONFLICT (409) ProjectIsAlreadyCommitted The project has al-

ready been commit-

ted.

CONFLICT (409) ProjectDoesNotContainAnyJobs Project does not con-

tain any jobs.

CONFLICT (409) TranslationJobSourceLangIsInvalid The source language

code is invalid.

CONFLICT (409) TranslationJobTargetLangIsInvalid The target language

code is invalid.

CONFLICT (409) TranslationJobSourceLangIsTargetOnly The source language

is target only lan-

guage.

CONFLICT (409) TranslationJobLangPairIsNotSupported The language pair is

not supported by the

connection.

FORBIDDEN (403) TranslationJobDoesNotBelongToTheUser Translation job does

not belong to the user

which was found

based on the provided

secret.

NOTFOUND (404) TranslationJobDoesNotExist Translation job does

not exist.

CONFLICT (409) TranslationJobHasHasAlreadyBeenCancelled Translation job has al-

ready been cancelled.

CONFLICT (409) TranslationJobHasHasAlreadyBeenMarkedDelivered Translation job has al-

ready been marked as

delivered.

CONFLICT (409) TranslationJobIsNotReady Translation job is not

ready.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 40 / 44

STATUS CODE ERROR CODE MESSAGE

BADREQUEST (400) InvalidArgument [Information about

the invalid arguments]

BADREQUEST (400) MediaTypeIsNotSupported Only the media type

"multipart/form-data"

is supported.

BADREQUEST (400) TranslationJobPartIsMissingFromRequest The part "translation-

Job" is missing from

the request.

BADREQUEST (400) FilePartIsMissingFromRequest The part "file" is miss-

ing from the request.

INTERNALSERVER-

ERROR (500)

InternalServerError An internal error oc-

curred on the server.

Check the log for de-

tails.

5. SAMPLE CMS CONNECTOR APPLICATION
We’ve created a sample implementation of the CMS Connector, Sample CMS Connector or
SCC, available for download on memoQ’s website. You can use this sample implementation to
play with the CMS API, and you are free to change the source code as required.

The sample client application can be used to connect JIRA to memoQ Server, or to connect a
local file folder to memoQ Server:

 In the Jira mode, the sample client is connected to a Jira project. It picks up issues you de-
fine in a Jira filter, and submits them to memoQ Server. Then the issues enter In progress
state (or what you define), until the respective jobs are not delivered, and then finally they
enter Done state (or what you define). This mode can be used to test integration lifecycle
and the API with state-aware systems.

 In the local folder mode, the sample client picks up all files found in the specified directory,
and submits them to memoQ Server, using their filename extension as the file type. The
translated files are delivered to a subfolder. This mode can be used to see if a files of a spe-
cific type or with specific contents can be properly processed in memoQ.

The application, written in C#, is distributed in source code form, and it is a Microsoft Visual
Studio project. If you just want to play with it first, you can run its executable from the
\bin\Debug folder, without any installation steps.

5.1. CONFIGURING THE APPLICATION
The CMS API Sample Client application has a configuration file. You can use this to specify
connection details to a Jira instance under your control used for testing purposes. You can
find this file in c:\Users\<your-user-name>\AppData\Local\memoQ Sample CMS Connector\,

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 41 / 44

and is named memoQ Sample CMS Connector.config. The file is created when you run the ap-
plication the first time.

You can configure the settings described in the following table.

PARAMETER NAME DESCRIPTION

cmsApiUrl The service endpoint provided by memoQ Server. To
get this, launch memoQ PM, connect to memoQ
Server, open Server Administrator, click CMS Connec-
tions, and select the corresponding CMS connection,
then click Copy client connection information to the
Clipboard. Then paste the contents to a text editor.

cmsApiSecret The connection key for memoQ Server

jiraApiUrl The URL to access your Jira instance, in the form of
https://<jira-URL>/rest/api/latest/

jiraApiUser The email address of the Jira user used to access Jira.

jiraApiPassword The password of the user specified in the jiraApiUser
parameter. Since the password is stored as clean text,
it is recommended to create a dedicated users with
the least required set of privileges.

jiraApiQuery The query to run on Jira to get the issues used for your
tests.

The simplest way is to create a dedicated test project
with the simplest workflow, and specify it in the form
of Project = “<Project name>” AND status = “To Do”.
This means that the sample client will pick up each is-
sues in To Do state and will submit them to memoQ.

xliffSource The source language code for the XLIFF files to submit
to memoQ. Use two-letter codes like en.

xliffTarget The target language code for the XLIFF files to submit
to memoQ. Use two-letter codes like de.

memoQSource The memoQ-compatible source language code. Use
three-letter codes like eng.

memoQTarget The memoQ-compatible source language code. Use
three-letter codes like ger.

loggingLevels Leave as is

TransitionForStartingTranslation The status to which issues should be put when they
are submitted to memoQ Server. We believe 21 is a
standard value for In Progress and doesn’t need to be
touched.

TransitionForFinishingTranslation The status to which issues should be put when their
translations are downloaded from memoQ Server. We
believe 21 is a standard value for Done and doesn’t
need to be touched.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 42 / 44

PARAMETER NAME DESCRIPTION

inputFolder Specify the folder where you want to store the files to
submit to memoQ Server in the local folder mode. The
application will pick up all files from this folder only, ig-
noring its subfolders. Translations will be delivered to
the subfolder named Output of this folder.

You can also set this folder on the tool’s UI, and it will
save it to this setting, so you don’t need to set it all the
time you start the application.

5.2. USING THE APPLICATION
The followings briefly describe how to use the application. Feel free to consult the source
code for more details.

The application displays the following window.

Figure 18. Sample CMS Connector's window

If you submit a job to memoQ in one or the other operation mode, be sure that the applica-
tion is the same mode before you retrieve its translation.

5.2.1. JIRA MODE
SCC submits issues in XLIFF format, after converting the JSON received from Jira. The job pay-
loads (the transmitted files) will contain the Description field of the tickets, and the job name
will be the Issue key (issue ID). It ignores the title (Summary field)—but feel free to add it as
your first modification to the sample.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 43 / 44

Select Jira in the Connector drop-down box. Create some new issues in the connected Jira
project, then click Submit jobs to memoQ. You’ll see what is happening, and if the submission
is successful, you’ll see the new order and its jobs in the CMS Dashboard of memoQ (after you
click Load/Refresh). The issues in Jira will move to In Progress.

Upon delivery, memoQ sends a notification to SCC, however you’ll need to click Retrieve jobs
from memoQ to request SCC to download the translated files. This lets you investigate what
happens between the two events, but you can automate this download option as the second
modification to the source code, if you like. The issues in Jira will move to Done, and you’ll see
the translation in the Description field.

5.2.2. LOCAL FOLDER MODE
Just copy a bunch of files to a folder you like. Pay attention to file extensions, since they will
be used as the content type, which memoQ will use to determine which filter and configura-
tion to use for the various files.

Select Local folder in the Connector drop-down box. Make sure Source store contains the
path you need. Now simply click Submit jobs to memoQ. You’ll see what is happening, and if
the submission is successful, you’ll see the new order and its jobs in the CMS Dashboard of
memoQ (after you click Load/Refresh).

Upon delivery, memoQ sends a notification to SCC, however you’ll need to click Retrieve jobs
from memoQ to request SCC to download the translated files. This lets you investigate what
happens between the two events, but you can automate this download option as the second
modification to the source code, if you like. The received files will be saved to the path shown
in the Translation store field.

The Specify file type checkbox is there only for backward-compatibility reasons, and you
should not clear it. If you do so, SCC won’t specify the content type for jobs, and memoQ will
use the WordPress WPML filter for the files, what is likely against your intentions.

5.3. SOURCE CODE
Feel free to consult the source code. Here we just give a few hints as a head start to navigate
it:

 Low-level communication, assembling requests and parsing responses is implemented in
the mQCMSAPICommInterface and the mQCMSAPI_Session class.

 The class DataStructures defines the API request parameter structures. These will be con-
verted to JSON upon assembling requests and parsing responses.

 The classes TransferCMS2memoQ and TransfermemoQ2CMS implement order submission and
job download logic.

 CMS_Session_Jira takes care for Jira communication, and CMS_Session_Virtual handles file
system operations for the local folder mode.

MEMOQ SERVER CMS API

(P)(C) MEMOQ TRANSLATION TECHNOLOGIES PUBLIC INFORMATION PAGE 44 / 44

6. FREQUENTLY ASKED QUESTIONS
Do I need to host the CMS Connector as a publicly available service?
No, however in this case you cannot specify a callback URL for orders, meaning the CMS Con-
nector needs to use polling technique to get completed translations. See Do I need to specify
a callback URL for orders? for details.

For development and testing purposes, you can use the Sample CMS Connector on the com-
puter running your memoQ Server sandbox instance, and therefore you can use localhost as
the host name in URLs, and you can host the CMS Connector on that machine, too.

Do I need to specify a callback URL for orders?
Yes. You don’t need to rely on them, however, and you may even try specifying fake URLs. In
this case memoQ won’t be able to use a push model to instantly notify the CMS Connector
that a job has been completed. It may also cause the completed jobs to be stuck in an In De-
livery state or to reach Delivery Error state.

If you don’t specify a valid callback URL, the CMS Connector needs to regularly check the sta-
tus of the submitted jobs, and download the completed ones. This requires a careful selection
of polling frequency, since a translation workflow may take days. If you poll the server too of-
ten, you’ll generate a lot of superfluous traffic. If you choose a low frequency, completed jobs
will be delivered later as they may rest on the server for hours, until the next status infor-
mation request is received.

The Sample CMS Connector does not use valid callback URLs.

The CMS Connector has downloaded a translation. Then it received a comple-
tion notification for the same job again. Shall it download the translated file
again?
Yes. The contents of the translation might have been changed. For example, the translation
agency might have fixed an error. You should always assume a repeated delivery is for a good
reason, and that the latest translated file is the proper one.

